Evidence for reduced genetic variation in severely deformed juvenile salmonids

2006 ◽  
Vol 63 (12) ◽  
pp. 2700-2707 ◽  
Author(s):  
Katriina Tiira ◽  
Jorma Piironen ◽  
Craig R Primmer

Inbreeding is one of the factors that can result in high infant mortality. In many species, however, mortality at early life stages is very difficult to observe in the wild and estimates from later life stages may therefore underestimate the effects of reduced genetic variability on fitness. Using microsatellites, we compared the amount of genetic variation in severely deformed fry of Lake Saimaa salmon (Atlantic salmon, Salmo salar) and brown trout (Salmo trutta) hatchery brood stocks with normal fry from the same brood stocks. We observed significantly lower standardized heterozygosity and higher internal relatedness values for deformed fry of both species compared with normal fry. Our results suggest that (i) inbreeding can be an important factor causing severe deformities in juvenile salmonids and (ii) high mortality of severely deformed low heterozygosity individuals in early life stages may partly explain why some studies exploring heterozygosity–fitness correlations fail to find any association. An important direction for future research on this topic will be to compare the results of experiments conducted in captivity with those of similar experiments conducted in wild or semi-wild conditions, as such studies would help to better understand the direct relevance of research conducted in captivity with respect to the conservation of wild populations.

PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0155487 ◽  
Author(s):  
Emilie Réalis-Doyelle ◽  
Alain Pasquet ◽  
Daniel De Charleroy ◽  
Pascal Fontaine ◽  
Fabrice Teletchea

2011 ◽  
Vol 8 (12) ◽  
pp. 3697-3707 ◽  
Author(s):  
A. Franke ◽  
C. Clemmesen

Abstract. Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2) in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.). Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 μatm) and a control treatment (pCO2 480 μatm) until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship between pCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2361 ◽  
Author(s):  
Hannah Schmieg ◽  
Janne K.Y. Burmester ◽  
Stefanie Krais ◽  
Aki S. Ruhl ◽  
Selina Tisler ◽  
...  

Whether microplastics themselves or their interactions with chemicals influence the health and development of aquatic organisms has become a matter of scientific discussion. In aquatic environments, several groups of chemicals are abundant in parallel to microplastics. The tricyclic antidepressant amitriptyline is frequently prescribed, and residues of it are regularly found in surface waters. In the present study, the influence of irregularly shaped polystyrene microplastics (<50 µm), amitriptyline, and their mixture on early life-stages of brown trout were investigated. In a first experiment, the impacts of 100, 104, and 105 particles/L were studied from the fertilization of eggs until one month after yolk-sac consumption. In a second experiment, eggs were exposed in eyed ova stages to 105, 106 particles/L, to amitriptyline (pulse-spiked, average 48 ± 33 µg/L) or to two mixtures for two months. Microplastics alone did neither influence the development of fish nor the oxidative stress level or the acetylcholinesterase activity. Solely, a slight effect on the resting behavior of fry exposed to 106 particles/L was observed. Amitriptyline exposure exerted a significant effect on development, caused elevated acetylcholinesterase activity and inhibition of two carboxylesterases. Most obvious was the severely altered swimming and resting behavior. However, effects of amitriptyline were not modulated by microplastics.


2020 ◽  
Vol 740 ◽  
pp. 139922
Author(s):  
Magdalena Jakubowska ◽  
Marcin Białowąs ◽  
Milda Stankevičiūtė ◽  
Agnieszka Chomiczewska ◽  
Janina Pažusienė ◽  
...  

2003 ◽  
Vol 65 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Till Luckenbach ◽  
Hermann Ferling ◽  
Maike Gernhöfer ◽  
Heinz-R. Köhler ◽  
Rolf-Dieter Negele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document