Forage fish and the factors governing recovery of Atlantic cod (Gadus morhua) on the eastern Scotian Shelf

2012 ◽  
Vol 69 (6) ◽  
pp. 997-1001 ◽  
Author(s):  
Douglas P. Swain ◽  
Robert K. Mohn

The stock of Atlantic cod ( Gadus morhua ) on the eastern Scotian Shelf (ESS) collapsed in the early 1990s and showed no sign of recovery during a 15-year fishing moratorium, but has recently increased in abundance. Both the prolonged lack of recovery and the recent improvement have been attributed to changes in the biomass of forage fishes through effects of predation and competition by these fishes on early life stages of cod. An examination of the relationships between forage fish biomass and the population dynamics of ESS cod provided no support for this hypothesis. Contrary to expectations under this hypothesis, cod recruitment rate was unrelated to forage fish biomass. The main factor delaying recovery was high natural mortality (M) of adult cod. The recent improvement in ESS cod is due to the strong 2004 year class and a decline in M. These factors cannot be attributed to an effect of forage fishes. Both the delay in recovery and recent improvement of the ESS cod stock appear to be due to factors other than interactions with forage fishes.


2005 ◽  
Vol 62 (7) ◽  
pp. 1474-1489 ◽  
Author(s):  
Alida Bundy ◽  
L Paul Fanning

The Atlantic cod (Gadus morhua) stock on the eastern Scotian Shelf collapsed in 1993. Over a decade later, in spite of a fisheries moratorium on cod fishing, this stock is at an all-time low. In parallel with the collapse of the cod stock, the abundance of large cod prey, including forage fish, shrimp, and snow crab, has greatly increased. The key question, which we explore using trophic mass-balance models, is what processes are preventing cod from recovering on the eastern Scotian Shelf? Cod were split into large and small cod. Modelling results indicate high predation pressure on small cod. In addition, small cod compete with the abundant forage fish for decreasing prey, and are in below-average condition. Large cod incur high, but unidentified, mortality that we suggest is derived from the poor condition of small cod carried through to adulthood. As a consequence of the removal of cod by fishing and an ensusing trophic cascade, eastern Scotian Shelf cod are trapped in a vicious circle: their abundance is being kept low by predation, causing an abundance so low that cod cannot compete for prey with their exceptionally abundant competitors. Furthermore, these competitors may also prey on younger stages of cod.



2010 ◽  
Vol 70 (5) ◽  
pp. 383-394 ◽  
Author(s):  
Sonnich Meier ◽  
H. Craig Morton ◽  
Gunnar Nyhammer ◽  
Bjørn Einar Grøsvik ◽  
Valeri Makhotin ◽  
...  


2000 ◽  
Vol 57 (7) ◽  
pp. 1321-1325 ◽  
Author(s):  
D P Swain ◽  
A F Sinclair

Like most other stocks of Atlantic cod (Gadus morhua) in the Northwest Atlantic, cod in the southern Gulf of St. Lawrence declined to low abundance in the early 1990s. Recovery has been slow in contrast with the rapid recovery from similar levels of abundance in the mid-1970s. This difference reflects remarkably high prerecruit survival of cod in the earlier period of low abundance rather than unusually poor survival in the 1990s. The period of high prerecruit survival of cod coincided with the collapse of herring (Clupea harengus) and mackerel (Scomber scombrus) stocks resulting from overfishing. These pelagic fishes are potential predators or competitors of the early life history stages of cod. We report a strong negative relationship between the biomass of these pelagic fishes and recruitment rate of southern Gulf cod. This is consistent with the recent suggestion that the success of large predatory fishes may depend on "cultivation" effects in which the adults crop down forage fishes that are predators or competitors of their young. Our results also point to the possibility of a triangular food web involving cod, seals, and pelagic fishes, making it difficult to predict the effect of a proposed cull of seals on the recovery of cod.



1995 ◽  
Vol 52 (5) ◽  
pp. 1083-1093 ◽  
Author(s):  
Thomas J. Miller ◽  
Tomasz Herra ◽  
William C. Leggett

We assessed the seasonal pattern of size variation in cod eggs on the Scotian Shelf region of the Northwest Atlantic during the period March 1991–May 1993. Cod eggs were present from October to May during the surveys. Spawning was not strongly bimodal. There was a dominant autumn peak, in contrast to the historically dominant spring spawning. Egg diameter varied seasonally. Seasonal temperature patterns explained 52% of the variation in egg diameter. By incubating the eggs on-board ship, we also assessed the seasonality of the standard length (SL) of larvae that hatched from these eggs. Larval SL also varied seasonally. Egg diameter and SL were significantly correlated, but the correlation was weak (r2 = 0.3). However, the strength of correlation was consistent with laboratory estimates based on individual data. The results suggest that previous estimates of the egg size – larval size correlations are inflated. Temperature exerted a significant effect on both egg diameter and larval size, and is hypothesized to be the agent responsible for the observed seasonal variation.



2016 ◽  
Vol 73 (12) ◽  
pp. 1914-1921 ◽  
Author(s):  
J. Michael Jech ◽  
Ian H. McQuinn

A debate has developed over the ecosystem consequences following the collapse of Atlantic cod throughout the coastal waters of eastern Canada. The explosive increase in pelagic fish abundance in scientific bottom-trawl catches on the eastern Scotian Shelf has been interpreted as being due to either (i) a “pelagic outburst” of forage fish abundance resulting from predator release or conversely (ii) a change in pelagic fish vertical distribution leading to a “suprabenthic habitat occupation” thereby increasing their availability to bottom trawls. These two interpretations have diametrically opposing ecological consequences and suggest different management strategies for these important forage fish species. We argue that an objective evaluation of the available evidence supports the hypothesis that the abundance of forage fish has not increased in response to the demise of cod and other top predators, and the reliance on a single sampling gear with low catchability has biased and will continue to bias the interpretation of demographic trends of pelagic fish populations. We advocate that multiple sampling technologies providing alternative perspectives are needed for the monitoring and management of the various trophic levels if we are to achieve a balanced and objective understanding of marine ecosystems.



2014 ◽  
Vol 71 (9) ◽  
pp. 1349-1362 ◽  
Author(s):  
David E. Richardson ◽  
Michael C. Palmer ◽  
Brian E. Smith

Shifts in the distribution and aggregation patterns of exploited fish populations can affect the behavior and success of fishermen and can complicate the interpretation of fisheries-dependent data. Starting in 2006, coinciding with an increase in sand lance (Ammodytes spp.) abundance, Gulf of Maine Atlantic cod (Gadus morhua) concentrated on Stellwagen Bank, a small (405 km2) underwater plateau located in the southwestern portion of the larger (52 461 km2) stock area. The cod fishery in turn concentrated on Stellwagen Bank. Specifically, the proportion of Gulf of Maine cod landings caught in a single 10-minute square area (260 km2) encompassing the tip of Stellwagen Bank increased from 12% in 2005 to 45% in 2010. An increase in landings per unit effort in the fishery coincided with the concentration of the fleet on Stellwagen Bank. Overall, both fisheries-independent and fisheries-dependent data indicate that an increase in sand lance abundance resulted in cod aggregating in a small and predictable area where they were easily caught by the fishery. More broadly, this work illustrates how changes in the distribution patterns of fish and fisherman can decouple trends in abundance and fisheries catch per unit effort.



2005 ◽  
Vol 62 (7) ◽  
pp. 1453-1473 ◽  
Author(s):  
Alida Bundy

The fishery-induced collapse of the Atlantic cod (Gadus morhua) stock on the eastern Scotian Shelf has altered the species composition of this ecosystem. Ecopath mass-balance models of the ecosystem before and after the collapse were developed to explore how the structure, function, and key species of the ecosystem had changed. For the first time, an analysis of uncertainty was conducted to examine the effects of the uncertainty on model estimates. A comparison of the two Ecopath models indicated that although total productivity and total biomass of the ecosystem remained similar, there were changes in predator structure, trophic structure, and energy flow, many of which were robust to uncertainty. Biomass has significantly increased at trophic levels 3 and 4, and the composition of these trophic levels has changed as a result of the mean increase in trophic level of many species-groups. Piscivory has increased, presumably because of the high abundance of small pelagic fish, and the ratio of pelagic feeders to demersal feeders has increased from 0.3 to 3.0. Thus, the ecosystem has changed from a demersal-feeder-dominated system to a pelagic-feeder-dominated system. Although uncertainty remains concerning some model estimates, the ecosystem has been profoundly altered and exhibits classic symptoms of "fishing down the food web". However, overall system properties were generally conserved.



2000 ◽  
Vol 57 (12) ◽  
pp. 2393-2401 ◽  
Author(s):  
D P Swain ◽  
K T Frank

We examined spatial variation in the vertebral number of Atlantic cod (Gadus morhua) during the summer feeding season in the southern Gulf of St. Lawrence and on the Scotian Shelf. Mean vertebral number increased significantly with depth in the southern Gulf and on the northeastern Scotian Shelf but not on the southwestern Scotian Shelf. In the southern Gulf, where sampling was most extensive, mean vertebral number increased steadily as depth increased from 25 m to over 175 m. Mean vertebral number was also strongly related to relative length within age-classes, with the larger fish at age having more vertebrae. However, the association between vertebral number and depth could not be attributed to confounding between depth and size at age. These results indicate either unexpected mixing between neighbouring cod populations or unexpected structure at fine spatial scales within cod populations.



2019 ◽  
Vol 652 ◽  
pp. 1062-1070 ◽  
Author(s):  
Bjørn Henrik Hansen ◽  
Arne Malzahn ◽  
Andreas Hagemann ◽  
Julia Farkas ◽  
Jørgen Skancke ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document