stock mixing
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

2017 ◽  
Vol 74 (11) ◽  
pp. 1990-2004 ◽  
Author(s):  
Lisa A. Kerr ◽  
Steven X. Cadrin ◽  
David H. Secor ◽  
Nathan G. Taylor

Atlantic bluefin tuna (Thunnus thynnus) is currently managed as two separate eastern and western stocks, despite information indicating considerable stock mixing. Using a simulation model, we explored how scenarios of population-specific migration and uncertainty in aspects of bluefin tuna biology affect the magnitude, distribution, and mixed stock nature of the resource and catch of its associated fisheries. The analytical framework was a stochastic, age-structured, stock-overlap model that was seasonally and spatially explicit with movement of eastern- and western-origin tuna informed by tagging and otolith chemistry data. Alternate estimates of movement and assumptions regarding maturity and recruitment regime for western-origin fish were considered. Simulation of the operating model indicated considerable stock mixing in the western and central Atlantic, which resulted in differences between the stock and population view of western bluefin tuna. The relative biomass of the western population and its spatial and temporal distribution in the Atlantic was sensitive to model assumptions and configurations. Simulation modeling can provide a means to ascertain the potential consequences of stock mixing on the assessment and management of fishery resources.


2017 ◽  
Vol 74 (11) ◽  
pp. 1895-1903 ◽  
Author(s):  
Carryn L. de Moor ◽  
Douglas S. Butterworth ◽  
Carl D. van der Lingen

Differences in parasite infection have previously been used to distinguish between fish stocks. We demonstrate a novel use of parasite prevalence-by-length data to inform quantitatively on stock mixing. An initial two mixing stock hypothesis proved consistent with biological and survey data, suggesting that there are different stocks of sardine off the west and south coasts of South Africa. That hypothesis assumed that only recruits moved from the west to the south stock. However, new “tetracotyle”-type metacercarian parasite bio-tag data indicate a need to allow older fish to move between the stocks as well. We demonstrate extension of bio-tagging to inform on the plausibility of population structure hypotheses by including parasite prevalence-by-length data in the model’s likelihood. Our method enables the estimation of the magnitude of mixing between semidiscrete stocks, providing more precise estimates of annual movement. Such improved precision may be important in better informing future movement hypotheses and thereby management. Our research provides a framework to use to inform quantitatively on stock structure and movement hypotheses for other fish species with bio-tagging data.


2016 ◽  
Vol 73 (9) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jean-Sébastien Moore ◽  
Les N. Harris ◽  
Steven T. Kessel ◽  
Louis Bernatchez ◽  
Ross F. Tallman ◽  
...  

We used an array of fixed acoustic receivers (N = 42) to track the summer marine movements of 121 anadromous Arctic char (Salvelinus alpinus) equipped with acoustic transmitters at three locations in the Cambridge Bay region, where commercial and subsistence fisheries target the species. The timing of transitions between salt and fresh water was influenced by the putative river of origin of tagged individuals, but not by their size or sex. Females, however, were more likely to remain proximate to rivers where they were tagged throughout the summer. A majority of fish migrated west from their rivers of origin, primarily moving between estuarine environments. Individuals occupied estuaries for several days between bouts of marine movement, and these periods of residency coincided with spring tides in some estuaries. We also recorded increased numbers of detections on receivers located less than 1.5 km from the coast, indicating a preference for nearshore habitats. Finally, we report evidence of extensive stock mixing throughout the summer, including at known fishing locations and periods, a finding with implications for fisheries management.


2016 ◽  
Vol 74 (2) ◽  
pp. 535-551 ◽  
Author(s):  
François Bastardie ◽  
J. Rasmus Nielsen ◽  
Margit Eero ◽  
Federico Fuga ◽  
Anna Rindorf

Within the new FMSY European paradigm, this paper shows how a combination of changes in fish stock mixing, non-stationarity in productivity, and constraints on unit stock concepts undermine the effective management of fisheries, especially when management reference points are not adjusted accordingly. Recent changes in stock structures, conditions and stock mixing between eastern and western Baltic cod can jeopardize the reliability of stock assessments and of the fishery economy. We modelled how different management, individual vessel decision-making, and stock growth and mixing scenarios have induced alternative individual vessel spatial effort allocation and economic performance by affecting fishing costs and by changing the relative stock abundance and size distribution. Stock mixing heavily influences profit and stock abundance for stocks that have experienced increased fishing mortality (F) levels. Western cod F has increased from a higher total allowed catches (TAC) advised in the medium-term due to the westward migration of eastern cod while eastern cod F has increased from reduced growth in the east. Greater pressures on western cod and decreased eastern cod growth and conditions greatly reduce the overall cod spawning stock biomass, thus changing the landing size composition and associated fishery profits. As a cumulative effect, fishing efforts are redirected towards western areas depending on management (quotas). However, total profits are less affected when traditional fishing opportunities and switching possibilities for other species and areas are maintained. Our evaluation indicates that current management mechanisms cannot correct for potential detrimental effects on cod fisheries when effort re-allocation changes landing origins. By investigating different economic starting conditions we further show that Baltic cod mis-management could have resulted in unintended unequal (skewed) impacts and serious consequences for certain fleets and fishing communities compared with others. Our management strategy evaluation is instrumental in capturing non-linear effects of different recommendations on sustainability and economic viability, and we show that fixed F-values management is likely not an attainable or sufficient goal in ensuring the sustainability and viability of fisheries and stocks given changing biological conditions.


2015 ◽  
Vol 73 (2) ◽  
pp. 293-303 ◽  
Author(s):  
K. Hüssy ◽  
H.-H. Hinrichsen ◽  
M. Eero ◽  
H. Mosegaard ◽  
J. Hemmer-Hansen ◽  
...  

2014 ◽  
Vol 71 (6) ◽  
pp. 1443-1457 ◽  
Author(s):  
Jie Cao ◽  
Samuel B. Truesdell ◽  
Yong Chen

Atlantic cod (Gadus morhua) in the Northwest Atlantic off New England and southern Atlantic Canada exhibit a complex population structure. This region has three independently assessed stocks [Georges Bank, Gulf of Maine (GOM), and the 4X stock], all of which are known to mix with each other. Assessments of these stocks, however, assume no interpopulation mixing. Using simulations, we evaluated impacts of ignoring mixing resulting from seasonal migrations on the GOM assessment. The dynamics of the three stocks were simulated according to different scenarios of interstock mixing, and a statistical catch-at-age stock assessment model was fitted to the simulated GOM data with and without mixing. The results suggest that, while mixing causes measurable bias in the assessment, under the conditions tested, this model still performed well. Of the bias that does exist, spawning-stock biomass estimates are relatively sensitive to mixing compared with estimates of recruitment and exploitation rate. The relative timing of seasonal migration of the three stocks plays a critical role in determining the magnitude of bias. The scale and trends among years in the bias were driven by how representative the catch and survey data were for the GOM stock; this representation changed with the mixing rates.


2010 ◽  
Vol 67 (3) ◽  
pp. 563-569 ◽  
Author(s):  
Ryan W. Schloesser ◽  
John D. Neilson ◽  
David H. Secor ◽  
Jay R. Rooker

Increased knowledge of stock mixing and migration of Atlantic bluefin tuna ( Thunnus thynnus ) is required to properly manage and conserve declining populations. Here, we predicted the nursery origin of giant bluefin tuna (n = 224) present in samples from Canadian waters using stable δ13C and δ18O isotopes in otoliths. The isotopic composition of milled otolith cores (corresponding to the first year of life) of giant bluefin tuna from three decades (1970s, 1980s, 2000s) and three regions within or adjacent to the Gulf of St. Lawrence was compared with otolith δ13C and δ18O of yearling bluefin tuna collected from eastern (Mediterranean Sea – eastern Atlantic, n = 136) and western (western Atlantic, n = 103) nurseries. Maximum likelihood estimates indicated that greater than 99% of bluefin tuna in our Canadian samples originated from the western nursery. No significant differences in estimates of origin for bluefin tuna were detected among decades or among regions, suggesting little to no mixing of eastern and western populations in the Canadian samples examined. These findings justify the use of catch rates from the Gulf of St. Lawrence area as an index of abundance for the oldest members of the western population.


2009 ◽  
Vol 66 (8) ◽  
pp. 1688-1695 ◽  
Author(s):  
Audrey J. Geffen

Abstract Geffen, A. J. 2009. Advances in herring biology: from simple to complex, coping with plasticity and adaptability. – ICES Journal of Marine Science, 66: 1688–1695. At least two centuries of investigations on herring have been absorbed by scientific journals, and applied and basic research has produced groundbreaking concepts in fisheries, population biology, and marine ecology. By the 1970s, a firm understanding of herring biology formed the basis for more sophisticated research. At that point, herring populations had been delineated, and their migration patterns described. The reproduction and early stage biology were characterized in ways that could be applied to fisheries management. However, over the subsequent four decades, new approaches and technology overturned many of the earlier findings. Behavioural studies revealed a repertoire of patterns that extended the concept of schooling, and genetic analyses showed high levels of stock mixing. Application of otolith analysis to larval, juvenile, and adult fish revealed the scope of plasticity in growth and life-history strategies. Developments in physiological research have revealed that herring are not “primitive”, as once believed, but highly adaptable in their nutrition and metabolism. These advances fundamentally changed our view of herring, and the resulting challenge is to synthesize current knowledge to help explain the significance of adaptability and plasticity in its flexible life history.


Sign in / Sign up

Export Citation Format

Share Document