Prey Selection by Freshwater Predators with Different Foraging Strategies

1985 ◽  
Vol 42 (11) ◽  
pp. 1720-1732 ◽  
Author(s):  
Scott D. Cooper ◽  
Daniel W. Smith ◽  
James R. Bence

We observed several freshwater predators, including the odonate larvae Pachydiplax longipennis and Anax junius, the hemipterans Notonecta unifasciata and Buenoa scimitra, the dytiscid larva Acilius semisulcatus, and juvenile Gambusia affinis, feeding on a variety of microcrustacean prey and determined the frequency of the component parts of predator–prey interactions (encounter, attack, capture, ingestion). Encounter rates were the most important determinant of predator selectivity when predators were presented with a variety of microcrustacean prey. When only copepod species were used as prey, however, both encounter rates and capture success were important in determining predator diets. We used our data to test hypotheses concerning relationships between predator foraging mode and patterns of prey selection: mobile predators exhibited stronger selection for sedentary prey than did sit-and-wait predators; our own and literature data also indicated that macroinvertebrate sit-and-wait predators are better able to capture, and have higher selectivity for evasive prey than do mobile predators. A predator's attack acceleration, however, may be a better predictor of its selectivity for evasive versus nonevasive prey than its mean swimming speed.

1982 ◽  
Vol 39 (12) ◽  
pp. 1569-1579 ◽  
Author(s):  
Howard P. Riessen

Predation by the pelagic water mite Piona constricta on the various components of the zooplankton community of Heney Lake, Quebec, Canada, was investigated through both direct observation and several series of feeding experiments. On encountering a prey item, the mite seized the organism with its four pairs of legs and pair of palps and tore a hole in the body wall with its chelicerae. The soft body tissues of the prey were predigested and the liquid nutriment was then drawn into the mouth. Pionid adults ate an average of 10–15 prey∙mite−1∙d−1 and selected prey items as follows: Bosmina > Daphnia, Ceriodaphnia > Chydorus >> Diaphanosoma, Diaptomus > Mesocyclops. The nymphs ate only 2–3 prey∙mite−1∙d−1 with Bosmina and Chydorus as the preferred items. The other cladocerans and the copepods were only rarely eaten. The pattern of prey selection for the adults and nymphs appeared to depend primarily on the escape response of the prey (their ability to detect an approaching mite and flee the area before being grabbed). Prey size and carapace thickness were of secondary importance.Key words: water mites, Piona constricta; zooplankton, predator–prey interactions


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
R. Craig Albertson ◽  
W. James Cooper ◽  
Kenneth A. Mann

African cichlids have undergone extensive and repeated adaptive radiations in foraging habitat. While the external morphology of the cichlid craniofacial skeleton has been studied extensively, biomechanically relevant changes to internal bone architecture have been largely overlooked. Here we explore two fundamental questions: (1) Do changes in the internal architecture of bone accompany shifts in foraging mode? (2) What is the genetic basis for this trait? We focus on the maxilla, which is an integral part of the feeding apparatus and an element that should be subjected to significant bending forces during biting. Analyses of μCT scans revealed clear differences between the maxilla of two species that employ alternative foraging strategies (i.e., biting versus suction feeding). Hybrids between the two species exhibit maxillary geometries that closely resemble those of the suction feeding species, consistent with a dominant mode of inheritance. This was supported by the results of a genetic mapping experiment, where suction feeding alleles were dominant to biting alleles at two loci that affect bone architecture. Overall, these data suggest that the internal structure of the cichlid maxilla has a tractable genetic basis and that discrete shifts in this trait have accompanied the evolution of alternate feeding modes.


2017 ◽  
Vol 44 (1) ◽  
pp. 28 ◽  
Author(s):  
N. T. Maruping-Mzileni ◽  
P. J. Funston ◽  
S. M. Ferreira

Aims Indicators of pending state-shifts carry value for policy makers. Predator–prey relations reflect key ecological processes that shape ecosystems. Variance in predator–prey relations may serve as a key indicator of future state-shifts. Methods Lion (Panthera leo) diet in the Kruger National Park was evaluated as such an indicator. Over the three-decade time span reviewed, variance in diet in relation to rainfall, prey abundance, management strategies and disease emergence were reviewed. Key results Rainfall patterns, both seasonal and cyclical, were identified as key drivers of predator–prey selection. However, the intensity of management in the form of artificial waterpoints overrode and confounded natural process. The results suggest that savanna systems are stable and punctuated by climatic events in the form of extreme above-average rainfall that temporarily destabilises the system. However, droughts are a cyclical part of the savanna system. Conclusion Lion prey selection did fluctuate with changing environmental conditions. Abrupt state shifts did occur; however, the ecosystem returned to a stable state. Implications State shifts in ecosystems pose key challenges to conservation managers. State shifts appear to be primarily associated with management interventions and environmental factors.


2004 ◽  
Vol 82 (9) ◽  
pp. 1477-1483 ◽  
Author(s):  
Matthew J Parris ◽  
Alison Davis ◽  
James P Collins

Pathogens can alter host behavior and affect the outcome of predator-prey interactions. Acute phase responses of hosts (e.g., a change in activity level or behavioral fever) often signal an infection, but the ecological consequences of host behavioral changes largely are unexplored, particularly for directly transmitted (i.e., single-host) pathogens. We performed three experiments to test the hypothesis that a pathogen, Ambystoma tigrinum virus (ATV), alters host behavior of Sonoran tiger salamanders (Ambystoma tigrinum stebbinsi Lowe, 1954) and enhances predation. In the first experiment, salamander larvae exposed to ATV experienced 48% lower mortality from dragonfly Anax junius (Drury, 1773) larvae than those in controls. Second, uninfected and infected larvae exposed to the nonlethal (caged) presence of predators did not significantly differ in their distance from the predator. Infected salamanders significantly increased their activity level relative to those in controls in predator-free conditions. Finally, ATV-infected larvae preferred significantly warmer temperatures than uninfected larvae, but larvae reared at the thermal maximum for the virus all died. High host activity level yet retention of effective antipredator responses likely benefits ATV because this single-host pathogen relies on host survival for transmission. Preference for warmer temperatures may be associated with the host response to pathogens and may help fight infection.


2007 ◽  
Vol 69 (6) ◽  
pp. 1827-1846 ◽  
Author(s):  
Helen J. Edwards ◽  
Calvin Dytham ◽  
Jonathan W. Pitchford ◽  
David Righton

1985 ◽  
Vol 63 (11) ◽  
pp. 2507-2515 ◽  
Author(s):  
Robert M. R. Barclay

Habitat use, temporal activity, foraging behaviour, and prey selection of hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans) were studied at Delta Marsh, Manitoba. Bat activity was assessed by monitoring echolocation calls with ultrasonic detectors. Prey availability was determined using sticky and Malaise traps and dietary information was obtained from fecal analysis. Both species were active all night and foraged primarily in the lee of a narrow forested ridge. Lasionycteris noctivagans foraged in a manner that indicates that it detects and pursues prey over short distances. These bats fly slowly, are highly manoeuverable, and were commonly observed feeding on swarms of insects in small clearings. They use echolocation calls that support the notion of a short-range foraging strategy and feed opportunistically on whatever insects are available. Lasiurus cinereus, on the other hand, uses a long-range prey detection and pursuit foraging strategy. They fly rapidly along straight line paths in open areas and use echolocation calls designed to detect insects at a distance. The diet consists primarily of large insects (moths, beetles, and dragonflies), but the bats nonetheless feed opportunistically. The foraging strategy likely restricts the availability and profitability of small insects as prey.


2019 ◽  
Vol 97 (5) ◽  
pp. 488-494 ◽  
Author(s):  
Riley R. Lawson ◽  
Dillon T. Fogarty ◽  
Scott R. Loss

Predator–prey interactions influence behaviors and life-history evolution for both predator and prey species and also have implications for biodiversity conservation. A fundamental goal of ecology is to clarify mechanisms underlying predator–prey interactions and dynamics. To investigate the role of predator sensory mechanisms in predator–prey interactions, specifically in predator detection of prey, we experimentally evaluated importance of visual and olfactory cues for an apex predator, the coyote (Canis latrans Say, 1823). Unlike similar studies, we examined use of sensory cues in a field setting. We used trail cameras and four replicated treatments — visual only, olfactory only, visual and olfactory combined, and a control — to quantify coyote visitation rates in North American deciduous forests during fall 2016. Coyote visitation was greatest for olfactory-only and visual-only cues, followed by the combined olfactory–visual cue; all cues attracted more coyotes than the control (i.e., olfactory = visual > olfactory–visual > control). Our results suggest this apex predator uses both olfactory and visual cues while foraging for prey. These findings from a field study of free-roaming coyotes increase understanding of predator foraging behavior, predator–prey interactions, and sensory ecology. Our study also suggests future directions for field evaluations of the role of different sensory mechanisms in predator foraging and prey concealment behaviors.


2021 ◽  
Vol 179 ◽  
pp. 247-265
Author(s):  
Sarah R. Hoy ◽  
Daniel R. MacNulty ◽  
Matthew C. Metz ◽  
Douglas W. Smith ◽  
Daniel R. Stahler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document