scholarly journals Use of visual and olfactory sensory cues by an apex predator in deciduous forests

2019 ◽  
Vol 97 (5) ◽  
pp. 488-494 ◽  
Author(s):  
Riley R. Lawson ◽  
Dillon T. Fogarty ◽  
Scott R. Loss

Predator–prey interactions influence behaviors and life-history evolution for both predator and prey species and also have implications for biodiversity conservation. A fundamental goal of ecology is to clarify mechanisms underlying predator–prey interactions and dynamics. To investigate the role of predator sensory mechanisms in predator–prey interactions, specifically in predator detection of prey, we experimentally evaluated importance of visual and olfactory cues for an apex predator, the coyote (Canis latrans Say, 1823). Unlike similar studies, we examined use of sensory cues in a field setting. We used trail cameras and four replicated treatments — visual only, olfactory only, visual and olfactory combined, and a control — to quantify coyote visitation rates in North American deciduous forests during fall 2016. Coyote visitation was greatest for olfactory-only and visual-only cues, followed by the combined olfactory–visual cue; all cues attracted more coyotes than the control (i.e., olfactory = visual > olfactory–visual > control). Our results suggest this apex predator uses both olfactory and visual cues while foraging for prey. These findings from a field study of free-roaming coyotes increase understanding of predator foraging behavior, predator–prey interactions, and sensory ecology. Our study also suggests future directions for field evaluations of the role of different sensory mechanisms in predator foraging and prey concealment behaviors.

2018 ◽  
Vol 96 (7) ◽  
pp. 680-691 ◽  
Author(s):  
Jessica L. Clark ◽  
Paul A. Moore

The impact of nonconsumptive effects (NCEs) in structuring predator–prey interactions and trophic cascades is a prominent area of ecological research. For NCEs to occur, prey need to be able to detect the presence of predators through sensory mechanisms. The investigation of the role of different sensory modalities in predator detection has lagged behind the development of NCE-based theories. This study aimed to determine whether a hierarchy in the reliance upon sensory modalities exists in the rusty crayfish (Orconectes rusticus (Girard, 1852) = Faxonius rusticus (Girard, 1852)) for predator detection and if this hierarchy is altered across different sensory environments (flowing and nonflowing environments). Rusty crayfish were exposed to largemouth bass (Micropterus salmoides (Lacépède, 1802)) odor in either a flowing or nonflowing arena where behavior was recorded under different sensory lesions. Linear mixed models were conducted to determine the impact of lesions, flowing environments, and the interactive effects of lesions and flowing environments on the rusty crayfish ability to respond to predatory stimuli. Results from this study support the significance of sensory multimodality in the rusty crayfish for accurately detecting and assessing predatory threats. Results from this study also suggest a hierarchy in the reliance upon sensory modalities in the rusty crayfish that is dependent upon the environment and the location of rusty crayfish within an environment.


2014 ◽  
Vol 26 (5) ◽  
pp. 1013-1020 ◽  
Author(s):  
Titia Gebuis ◽  
Bert Reynvoet

Changes in the sensory properties of numerosity stimuli have a direct effect on the outcomes of nonsymbolic number tasks. This suggests a prominent role of sensory properties in numerosity processing. However, the current consensus holds that numerosity is processed independent of its sensory properties. To investigate the role of sensory cues in ordinal number processes, we manipulated both dimensions orthogonally. Participants passively viewed the stimuli while their brain activity was measured using EEG. The results revealed an interaction between numerosity and its sensory properties in the absence of main effects. Different neural responses were present for trials where numerosity and sensory cues changed in the same direction compared with trials where they changed in opposite directions. These results show that the sensory cues are expected to change in concert with numerosity and support the notion that the visual cues are taken into account when judging numerosity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin S. Mallory ◽  
Kiah Hardcastle ◽  
Malcolm G. Campbell ◽  
Alexander Attinger ◽  
Isabel I. C. Low ◽  
...  

AbstractNeural circuits generate representations of the external world from multiple information streams. The navigation system provides an exceptional lens through which we may gain insights about how such computations are implemented. Neural circuits in the medial temporal lobe construct a map-like representation of space that supports navigation. This computation integrates multiple sensory cues, and, in addition, is thought to require cues related to the individual’s movement through the environment. Here, we identify multiple self-motion signals, related to the position and velocity of the head and eyes, encoded by neurons in a key node of the navigation circuitry of mice, the medial entorhinal cortex (MEC). The representation of these signals is highly integrated with other cues in individual neurons. Such information could be used to compute the allocentric location of landmarks from visual cues and to generate internal representations of space.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasir Islam ◽  
Farhan Mahmood Shah ◽  
Xu Rubing ◽  
Muhammad Razaq ◽  
Miao Yabo ◽  
...  

AbstractIn the current study, we investigated the functional response of Harmonia axyridis adults and larvae foraging on Acyrthosiphon pisum nymphs at temperatures between 15 and 35 °C. Logistic regression and Roger’s random predator models were employed to determine the type and parameters of the functional response. Harmonia axyridis larvae and adults exhibited Type II functional responses to A. pisum, and warming increased both the predation activity and host aphid control mortality. Female and 4th instar H. axyridis consumed the most aphids. For fourth instar larvae and female H. axyridis adults, the successful attack rates were 0.23 ± 0.014 h−1 and 0.25 ± 0.015 h−1; the handling times were 0.13 ± 0.005 h and 0.16 ± 0.004 h; and the estimated maximum predation rates were 181.28 ± 14.54 and 153.85 ± 4.06, respectively. These findings accentuate the high performance of 4th instar and female H. axyridis and the role of temperature in their efficiency. Further, we discussed such temperature-driven shifts in predation and prey mortality concerning prey-predator foraging interactions towards biological control.


Author(s):  
Adam F. Werner ◽  
Jamie C. Gorman

Objective This study examines visual, auditory, and the combination of both (bimodal) coupling modes in the performance of a two-person perceptual-motor task, in which one person provides the perceptual inputs and the other the motor inputs. Background Parking a plane or landing a helicopter on a mountain top requires one person to provide motor inputs while another person provides perceptual inputs. Perceptual inputs are communicated either visually, auditorily, or through both cues. Methods One participant drove a remote-controlled car around an obstacle and through a target, while another participant provided auditory, visual, or bimodal cues for steering and acceleration. Difficulty was manipulated using target size. Performance (trial time, path variability), cue rate, and spatial ability were measured. Results Visual coupling outperformed auditory coupling. Bimodal performance was best in the most difficult task condition but also high in the easiest condition. Cue rate predicted performance in all coupling modes. Drivers with lower spatial ability required a faster auditory cue rate, whereas drivers with higher ability performed best with a lower rate. Conclusion Visual cues result in better performance when only one coupling mode is available. As predicted by multiple resource theory, when both cues are available, performance depends more on auditory cueing. In particular, drivers must be able to transform auditory cues into spatial actions. Application Spotters should be trained to provide an appropriate cue rate to match the spatial ability of the driver or pilot. Auditory cues can enhance visual communication when the interpersonal task is visual with spatial outputs.


Author(s):  
Shawna Bellamy ◽  
Barry W Alto

Abstract Non-lethal predator-prey interactions during the immature stages can cause significant changes to mosquito life history traits and their ability to transmit pathogens as adults. Treatment manipulations using mosquitoes Aedes aegypti (L.) and Toxoryhnchites rutilus (Coquillett) were performed during the immature stages to explore the potential impacts of non-lethal interactions on adult susceptibility to infection, disseminated infection and saliva infection of Ae. aegypti following ingestion of Zika virus-infected blood. Treatments inducing density reduction resulted in reduced development time and survivorship to adulthood. However, effects of treatment did not alter infection, dissemination, or saliva infection. These observations indicate that, while non-lethal predation may impact some traits that influence population dynamics and transmission of pathogens, there were no direct effects on mosquito-arbovirus interactions.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Atsushi Hirao

In avian mating systems, male domestic fowls are polygamous and mate with a number of selected members of the opposite sex. The factors that influence mating preference are considered to be visual cues. However, several studies have indicated that chemosensory cues also affect socio-sexual behavior, including mate choice and individual recognition. The female uropygial gland appears to provide odor for mate choice, as uropygial gland secretions are specific to individual body odor. Chicken olfactory bulbs possess efferent projections to the nucleus taeniae that are involved in copulatory behavior. From various reports, it appears that the uropygial gland has the potential to act as the source of social odor cues that dictate mate choice. In this review, evidence for the possible role of the uropygial gland on mate choice in domestic chickens is presented. However, it remains unclear whether a relationship exists between the uropygial gland and major histocompatibility complex-dependent mate choice.


Author(s):  
Nada Zwayyid Almutairi ◽  
Eman Salah Ibrahim Rizk

This study explores interactive e-book cues and Information Processing Levels (IPL)’s effectiveness on Learning Retention (LR) and External Cognitive Load (ECL). 117 middle school pupils (MSP) were divided into six experimental groups based on their IPL and cues during the second term of the academic year 2019–2020. Visual Cues (VC)/Audiovisual Cues (VAC) and Auditory Cues (AC)/Audiovisual Cues (VAC) statistically varied in the Ie-book in LR test and ECL scale, same for the average scores when testing the LR in Science for MSP due to the difference between IPL for the DL. There is a statistically significant effect of cue types' interaction in Ie-book with IPL in ECL scale for MSP, at its highest peak in the case of the AVC with DL, followed by the interaction resulting from the VC with DL then AC with SL. Also, cues interaction in Ie-book with IPL immensely affect the LR test for MEP, which is at its highest peak in the case of the AVC with DL. The interactions between (DL–SL) and (AC–VC) seem to equally influence the ELC.


1993 ◽  
Vol 3 (3) ◽  
pp. 307-314 ◽  
Author(s):  
H. Mittelstaedt ◽  
S. Glasauer

This contribution examines the consequences of two remarkable experiences of subjects in weightlessness, 1) the missing of sensations of trunk tilt and of the respective concomitant reflexes when the head is tilted with respect to the trunk, and 2) the persistence of a perception of “up” and “down,” that is, of the polarity of the subjective vertical (SV) in the absence of, as well as in contradiction to, visual cues. The first disproves that the necessary head-to-trunk coordinate transformation be achieved by adding representations of the respective angles gained by utricles and neck receptors, but corroborates an extant model of cross-multiplication of utricular, saccular, and neck receptor components. The second indicates the existence of force-independent components in the determination of the SV. Although the number of subjects is still small and experimental conditions are not as homogeneous as desired, measurements and/or reports on the ground, in parabolic, and in space flight point to the decisive role of the saccular z-bias, that is, of a difference of the mean resting discharges of saccular units polarized in the rostrad and the caudad (±z-) direction.


Sign in / Sign up

Export Citation Format

Share Document