Influence of Upwellings, Storms, and Generating Station Operation on Water Chemistry and Plankton in the Nanticoke Region of Long Point Bay, Lake Erie

1990 ◽  
Vol 47 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
T. G. Dunstall ◽  
J. C. H. Carter ◽  
B. P. Monroe ◽  
G. T. Haymes ◽  
R. R. Weiler ◽  
...  

Storms and upwellings resulted in significant alterations to the aquatic environment in the Long Point Bay region of Lake Erie, contributing to short-term variability in water chemistry and plankton. Both storms and upwellings resulted in nutrient enrichment (filtered reactive phosphorus, total inorganic nitrogen, reactive silicates and organic nitrogen) in lake surface waters during the period of lake warming, prior to mid-August. Storms and upwellings also differentially affected the distributions of specific zooplankton taxa in the lake surface stratum. The most prominent effect was the increased abundance of Diacyclops bicuspidatus thomasi during upwellings, particularly towards shore. The once-through cooling process of the generating station also affected zooplankton distributions, most notably that of D. bicuspidatus thomasi, with a nearshore increase in abundance that was similar to the influence exerted by upwelling.

Author(s):  
H. W. Harvey

A bio-assay of the nitrogen which was available to two phytoplankton species with their associated bacteria in an off-shore water is described.The concentrations found by assay (11·5 and 13μg N/1.) were similar to the concentration of total inorganic nitrogen compounds found by analysis (10μg N/1.).Of the organic nitrogen normally present in solution in sea water, an insignificant quantity appears to be available to the plant-bacteria community.


Chemosphere ◽  
2021 ◽  
pp. 130876
Author(s):  
Synthia P. Mallick ◽  
Donald R. Ryan ◽  
Kaushik Venkiteshwaran ◽  
Patrick J. McNamara ◽  
Brooke K. Mayer

Author(s):  
Allen D. Uhler ◽  
Jeffery H. Hardenstine ◽  
Deborah A. Edwards ◽  
Guilherme R. Lotufo

AbstractPolychlorinated biphenyls (PCBs) were added to certain marine vessel bottom paints as a plasticizer to improve the adhesion and durability of the paint. The most common PCB formulation used to amend such paints was Aroclor 1254. Fugitive Aroclor-containing paint chips generated from vessel maintenance and repair operations represent a potential source of PCB contamination to sediments. Limited published studies indicate that Aroclor-containing paint is largely inert and exhibits low PCB leaching into water; however, the rate and degree of leaching of PCBs from paint chips have not been directly studied. This laboratory-based study evaluated the rate and extent of leaching of PCBs from paint chips into freshwater. The results of this investigation demonstrate that the rate of PCB dissolution from paint chips decreased rapidly and exponentially over time. Based on this study, it is estimated that the rate of leaching of PCBs from paint chips would cease after approximately 3 years of exposure to water. When all leachable PCBs were exhausted, it is estimated that less than 1% of the mass of PCBs in the paint chips was amenable to dissolution. The results of this experiment suggest that Aroclor-containing paint chips found in sediments are likely short-term sources of dissolved-phase PCB to pore or surface waters and that the majority of the PCBs in paint chips remain in the paint matrix and unavailable for partitioning into water. Graphic Abstract


Author(s):  
Martha R.J. Clokie ◽  
Andrew D. Millard ◽  
Jaytry Y. Mehta ◽  
Nicholas H. Mann

Cyanophage abundance has been shown to fluctuate over long timescales and with depth, but little is known about how it varies over short timescales. Previous short-term studies have relied on counting total virus numbers and therefore the phages which infect cyanobacteria cannot be distinguished from the total count.In this study, an isolation-based approach was used to determine cyanophage abundance from water samples collected over a depth profile for a 24 h period from the Indian Ocean. Samples were used to infect Synechococcus sp. WH7803 and the number of plaque forming units (pfu) at each time point and depth were counted. At 10 m phage numbers were similar for most time-points, but there was a distinct peak in abundance at 0100 hours. Phage numbers were lower at 25 m and 50 m and did not show such strong temporal variation. No phages were found below this depth. Therefore, we conclude that only the abundance of phages in surface waters showed a clear temporal pattern over a short timescale. Fifty phages from a range of depths and time points were isolated and purified. The molecular diversity of these phages was estimated using a section of the phage-encoded psbD gene and the results from a phylogenetic analysis do not suggest that phages from the deeper waters form a distinct subgroup.


2021 ◽  
Vol 130 ◽  
pp. 108055
Author(s):  
Song S. Qian ◽  
Craig A. Stow ◽  
Freya E. Rowland ◽  
Qianqian Liu ◽  
Mark D. Rowe ◽  
...  

2005 ◽  
Vol 5 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
J.-U. Grooß ◽  
G. Günther ◽  
R. Müller ◽  
P. Konopka ◽  
S. Bausch ◽  
...  

Abstract. We present simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the Arctic winter 2002/2003. We integrated a Lagrangian denitrification scheme into the three-dimensional version of CLaMS that calculates the growth and sedimentation of nitric acid trihydrate (NAT) particles along individual particle trajectories. From those, we derive the HNO3 downward flux resulting from different particle nucleation assumptions. The simulation results show a clear vertical redistribution of total inorganic nitrogen ( ), with a maximum vortex average permanent removal of over 5ppb in late December between 500 and 550K and a corresponding increase of of over 2ppb below about 450K. The simulated vertical redistribution of is compared with balloon observations by MkIV and in-situ observations from the high altitude aircraft Geophysica. Assuming a globally uniform NAT particle nucleation rate of 7.8x10-6cm-3h-1 in the model, the observed denitrification is well reproduced. In the investigated winter 2002/2003, the denitrification has only moderate impact (≤14%) on the simulated vortex average ozone loss of about 1.1ppm near the 460K level. At higher altitudes, above 600K potential temperature, the simulations show significant ozone depletion through -catalytic cycles due to the unusual early exposure of vortex air to sunlight.


Sign in / Sign up

Export Citation Format

Share Document