Attributes for NHDPlus catchments (version 1.1) for the conterminous United States: normalized atmospheric deposition for 2002, Total Inorganic Nitrogen

Data Series ◽  
2010 ◽  
Author(s):  
Michael Wieczorek ◽  
Andrew E. LaMotte
2005 ◽  
Vol 5 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
J.-U. Grooß ◽  
G. Günther ◽  
R. Müller ◽  
P. Konopka ◽  
S. Bausch ◽  
...  

Abstract. We present simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the Arctic winter 2002/2003. We integrated a Lagrangian denitrification scheme into the three-dimensional version of CLaMS that calculates the growth and sedimentation of nitric acid trihydrate (NAT) particles along individual particle trajectories. From those, we derive the HNO3 downward flux resulting from different particle nucleation assumptions. The simulation results show a clear vertical redistribution of total inorganic nitrogen ( ), with a maximum vortex average permanent removal of over 5ppb in late December between 500 and 550K and a corresponding increase of of over 2ppb below about 450K. The simulated vertical redistribution of is compared with balloon observations by MkIV and in-situ observations from the high altitude aircraft Geophysica. Assuming a globally uniform NAT particle nucleation rate of 7.8x10-6cm-3h-1 in the model, the observed denitrification is well reproduced. In the investigated winter 2002/2003, the denitrification has only moderate impact (≤14%) on the simulated vortex average ozone loss of about 1.1ppm near the 460K level. At higher altitudes, above 600K potential temperature, the simulations show significant ozone depletion through -catalytic cycles due to the unusual early exposure of vortex air to sunlight.


2018 ◽  
Author(s):  
◽  
Siphesihle Mangena Khumalo

South Africa is not an exception when it comes to the issue of fresh water scarcity perpetuated by environmental pollution among many other factors. Industrial wastewater particularly emanating from the brewing industry, contains high-strength organic, inorganic, and biological compounds which are toxic to the environment. Due to stringent industrial effluent dewatering standards enforced by both local and international environmental protection entities, industrial wastewater cannot be discharged into receiving water bodies prior to treatment. The overall aim of this study was to evaluate the performance or treatment efficacy of a laboratory scale sequencing batch reactor on biological nutrient removal using industrial wastewater from brewery. In this study, two laboratory scale sequencing batch reactors (SBRs) operated in a cyclic aerobic-anaerobic configuration inoculated with activated sludge were investigated for their removal of orthophosphates and nitrogen compounds from brewery wastewater. SBR-1 was investigated for nitrogen group pollutant removal and SBR-2 was investigated for orthophosphate removal. The findings of the study are reported based on overall removal efficacies for the following process monitoring parameters: orthophosphates, ammoniacal nitrogen, total Kjeldahl nitrogen, total nitrogen, total organic nitrogen, total inorganic nitrogen and NO3-N+NO2-N. From the investigation, the following overall removal efficacies were obtained: 69% orthophosphates, 69% ammoniacal nitrogen, 59% total Kjeldahl nitrogen, 60% total nitrogen, 64% total organic nitrogen, 67% total inorganic nitrogen and 56% NO3-N+NO2-N at an organic loading rate of 3.17 kg Total Chemical Oxygen Demand (TCOD) /m3.day with a food to microorganism ratio of 2.86 g TCOD/g Volatile Suspended Solids (VSS).day. These removal efficacies were attained for a hydraulic retention time of 18 hours for both SBRs with a solids retention time of 5 days for SBR-1 and 7 days for SBR-2. Both reactors were operated at a mesophilic temperature range of 23 to 26˚C and a pH range of 5 to 8.5. The temperature was left unadjusted because it was observed that it did not hinder any microbial activities during the biodegradation process. The Michealis-Menten’s and Monod models were implemented to study the substrate utilisation rate kinetics and microbial growth rate kinetics recording 15 141 g COD/m3.day; 12 518 g VSS/g VSS.day; 20 343 g COD/m3.day and 16 860 g VSS/g VSS.day for SBR-1 and SBR-2, respectively. The Monod model demonstrated a strong correlation fit between the substrate utilisation rate and microbial growth rate recording a polynomial correlation constant of R2 = 0.947 and 0.9582 for SBR-1 and SBR-2, respectively. The findings of this study showed that the cyclic aerobic-anaerobic configuration on a laboratory scale SBR inoculated with activated sludge for treatment of brewery wastewater for biological nutrients was feasible.


Author(s):  
O. V. Kravtsova ◽  
V. I. Scherbak ◽  
M. I. Linchuk

The seasonal dynamics of the concentration of nutrients in the form of inorganic nitrogen (NH4+, NO2, NO3-, ΣN), dissolved phosphorus, organic matter and the connection with the development of phytoplankton in waters with high content of total inorganic nitrogen (from 23.31 to 102.65 mg N/dm3) and its compounds (ammonia - from 8.42 to 76.60, nitrate - from 4.94 to 15.93, nitrite - from 0.077 to 4.35 mg N/dm3) and organic matter (from 8.00 to 21.92 mg O/dm3 by permanganate oxidation values and from 58.46 to 265.2 mg O/dm3 by dichromate oxidation values) were analyzed in paper. The peculiarity of the hydrochemical regime of the reservoirs was phenomenally high relations ΣN:P (133,54-12152,86) during the growing seasons. Found that response algal plankton communities such features hydrochemical regime is a simplification of the structure due to the predominance of representatives of departments Euglenophyta, Chlorophyta and Bacillariophyta, while Chrysophyta, Dinophyta, Charophyta and presented Cryptophyta 1-3 species. The response of phytoplankton to the high content of compounds of inorganic nitrogen is the increase in the number and biomass of green algae, and organic matter - eugenic algae.THE REGULARITIES OF PHYTOPLANKTON FORMATION AT VARIOS BIOGENIC ELEMENTS AND ORGANIC MATTER CONCENTRATIONS 


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 123
Author(s):  
Seth Michael Barrus ◽  
Gustavious Paul Williams ◽  
A. Woodruff Miller ◽  
M. Brett Borup ◽  
LaVere B. Merritt ◽  
...  

We describe modified sampling and analysis methods to quantify nutrient atmospheric deposition (AD) and estimate Utah Lake nutrient loading. We address criticisms of previous published collection methods, specifically collection table height, screened buckets, and assumptions of AD spatial patterns. We generally follow National Atmospheric Deposition Program (NADP) recommendations but deviate to measure lake AD, which includes deposition from both local and long-range sources. The NADP guidelines are designed to eliminate local contributions to the extent possible, while lake AD loads should include local contributions. We collected side-by-side data with tables at 1 m (previous results) and 2 m (NADP guidelines) above the ground at two separate locations. We found no statistically significant difference between data collected at the different heights. Previous published work assumed AD rates would decrease rapidly from the shore. We collected data from the lake interior and show that AD rates do not significantly decline away from the shore. This demonstrates that AD loads should be estimated by using the available data and geostatistical methods even if all data are from shoreline stations. We evaluated screening collection buckets. Standard unscreened AD samples had up to 3-fold higher nutrient concentrations than screened AD collections. It is not clear which samples best represent lake AD rates, but we recommend the use of screens and placed screens on all sample buckets for the majority of the 2020 data to exclude insects and other larger objects such as leaves. We updated AD load estimates for Utah Lake. Previous published estimates computed total AD loads of 350 and 153 tons of total phosphorous (TP) and 460 and 505 tons of dissolve inorganic nitrogen (DIN) for 2017 and 2018, respectively. Using updated collection methods, we estimated 262 and 133 tons of TP and 1052 and 482 tons of DIN for 2019 and 2020, respectively. The 2020 results used screened samplers with lower AD rates, which resulted in significantly lower totals than 2019. We present these modified methods and use data and analysis to support the updated methods and assumptions to help guide other studies of nutrient AD on lakes and reservoirs. We show that AD nutrient loads can be a significant amount of the total load and should be included in load studies.


Sign in / Sign up

Export Citation Format

Share Document