Importance of Latitude and Organic Color on Phytoplankton Primary Productivity in Florida Lakes

1991 ◽  
Vol 48 (7) ◽  
pp. 1145-1150 ◽  
Author(s):  
John R. Beaver ◽  
Thomas L. Crisman

A characterization of primary productivity patterns in subtropical Florida lakes along increasing gradients of both dissolved organic color and phytoplankton biomass is presented. Volumetric expression of gross primary productivity was more strongly correlated with chlorophyll a and nutrient concentrations than was areal expression. Primary production in clearwater (<75 Pt units) lakes was more predictable than colored (>75 Pt units) lakes. Areal production in Florida lakes was intermediate to the tropical and temperate regions, although volumetric productivity during the vegetative season (May–September) was not significantly different from temperate zone lakes for the same period. Predictive abilities of empirical equations describing primary productivity in Florida lakes are improved by distinguishing colored and clear lakes.

1993 ◽  
Vol 28 (6) ◽  
pp. 29-33 ◽  
Author(s):  
V. Vyhnálek ◽  
Z. Fišar ◽  
A. Fišarová ◽  
J. Komárková

The in vivo fluorescence of chlorophyll a was measured in samples of natural phytoplankton taken from the Římov Reservoir (Czech Republic) during the years 1987 and 1988. The fluorescence intensities of samples either with or without addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron, DCMU) were found reliable for calculating the concentration of chlorophyll a during periods when cyanobacteria were not abundant. The correction for background non-chlorophyll fluorescence appeared to be essential. No distinct correlation between a DCMU-induced increase of the fluorescence and primary production of phytoplankton was found.


1976 ◽  
Vol 33 (3) ◽  
pp. 601-611 ◽  
Author(s):  
M. Munawar ◽  
N. M. Burns

Comparison of the annual average distribution patterns of phytoplankton biomass, chlorophyll a, primary production, soluble reactive phosphorus, nitrate + nitrite, and ammonia concentrations revealed that these six variables had very similar distributions in Lake Erie during 1970. However, statistical analysis of the data only revealed a few consistent relationships between these variables. The phytoplankton biomass was correlated with chlorophyll a only in the summer and fall as was primary production with chlorophyll a and biomass. There was no correlation between these three variables during the spring. Also, there was no consistent relationship between biomass and soluble nutrients. The primary production and activity coefficient (mg Cassimilated per milligram phytoplankton biomass per day) were found to be unrelated to temperature. The statistical procedure of factor analysis showed that in the spring, primary production correlated with the phosphorus and nitrogen soluble nutrients only, whereas during summer, primary production correlated with biomass, chlorophyll a, the major plankton groups (Cyanophyta, Chlorophyta, Chrysomonadinae, and Diatomeae), and the phosphorus nutrients. In the fall, production was positively correlated with phytoplankton biomass and with the Chlorophyta in particular. The use of chlorophyll a and temperature as variables in the equation to estimate phytoplankton growth in Lake Erie was found to be questionable.


2016 ◽  
Vol 73 (9) ◽  
pp. 2238-2251 ◽  
Author(s):  
Edward D. Houde ◽  
Eric R. Annis ◽  
Lawrence W. Harding ◽  
Michael E. Mallonee ◽  
Michael J. Wilberg

Abstract The abundance of prerecruit, age-0 Atlantic menhaden (Brevoortia tyrannus), declined to low levels in Chesapeake Bay in the 1990s, after two decades of high abundances in the 1970s–1980s. Environmental factors and trophodynamics were hypothesized to control age-0 menhaden abundance. Data on age-0 menhaden abundance from seine and trawl surveys were analysed with respect to primary productivity, chlorophyll a (Chl a), and environmental variables. Abundance from 1989 to 2004 was strongly correlated with metrics of primary production and euphotic-layer Chl a, especially during spring months when larval menhaden transform into filter-feeding, phytoplanktivorous juveniles. Correlation, principal components, and multiple regression analyses were conducted that identified factors associated with age-0 menhaden abundance. Primary production, Chl a, and variables associated with freshwater flow, e.g. Secchi disk depth and zooplankton assemblages, were correlated with age-0 menhaden abundance. Lengths of age-0 menhaden were positively related to mean levels of annual primary production. However, lengths were negatively related to age-0 menhaden abundance, indicating that growth may be density-dependent. The identified relationships suggest that numbers of menhaden larvae ingressing to Chesapeake Bay and environmental factors that subsequently control primary productivity and food for juveniles within the Bay may control recruitment levels of Atlantic menhaden.


2005 ◽  
Vol 6 (1) ◽  
pp. 5 ◽  
Author(s):  
M.R. VADRUCCI ◽  
G. CATALANO ◽  
A. BASSET

Spatial and seasonal patterns of variation of fractionated phytoplankton biomass and primary production and their relationships with nutrient concentrations were analyzed along an inshore - offshore gradient and in relation to the presence of a frontal system in the Northern Adriatic Sea. Sampling was carried out in winter and summer during four oceanographic cruises (June 1996 and 1997, February 1997 and 1998) as part of the PRISMA II project. Water samples for determining nutrient concentrations, phytoplankton biomass (as Chla) and primary production (as 14 C assimilation) were collected at five optical depths. Sampling stations were located along 2 or 4 parallel transects arranged perpendicularly to the shoreline and the frontal system. The transects were located at such a distance from the coast that the frontal system crossed them at their halfway point. Total dissolved nitrogen (TDN) and total dissolved phosphorus concentrations (TDP) were 12.41 ± 3 .95 mM and 0.146 ± 0 .070 mM, respectively. The values in the two seasonal periods were similar, decreasing along the inshore-offshore gradient. Values for phytoplankton biomass and primary productionwere higher in the winter than the summer cruises, and decreased, in both seasonal periods, along the inshore / offshore gradient. Moreover, in both seasonal periods, picophytoplankton dominated both biomass and productivity, (56% and 44%, respectively) at stations beyond the frontal system, while microphytoplankton was more important at stations inside it (44% and 44%, respectively). Total phytoplankton biomass and primary production were directly related to nutrient concentrations. Regarding size classes, significant patterns of variation with nutrients were observed particularly for biomass. The results indicate that the size structure and function of phytoplankton guilds seem to be mediated by nutrient inflow, as well as by competitive interaction among size fractions.


2001 ◽  
Vol 36 (3) ◽  
pp. 537-564 ◽  
Author(s):  
Krzysztof Czernaś

Abstract From 1986 to 1998, the primary productivity of psammic algae was investigated in the psammolittoral of Lake Piaseczno, a mesotrophic lake. The oxygen method was developed for the direct measurement of primary production of these algae based on light and dark bottles without disturbing the subsoil structure. This productivity was also estimated in an indirect way by measurement of chlorophyll a concentrations. The productivity of phytoplankton was also measured in the same zone. The correlation between the productivity of algae and the concentration of nutrients and major ions in water was calculated. During the study period, the highest production was found in the eupsammon (31.1 to 187.7 Cass·m-2·h-1), with the hydropsammon being lower (9.6 to 100.6 Cass·m-2·h-1). For phytoplankton biomass, the numbers were very low, which is typical of pristine lakes. The chlorophyll a concentration during the study period demonstrated a different pattern ranging from 53 mg·m-2 in the hydropsammon to 765 mg·m-2 in the eupsammon. The assimilation number for these communities was always &lt;1. A positive (r &gt;0.4) correlation was found between the primary production of the eupsammon and the psammolittoral phytoplankton, and the concentration of NH4-N, NO3-N, Ntot, PO4-P, Ptot. and K+ in the piezometer groundwater. No correlation was found between primary production, chlorophyll a concentration and the concentration of nutrients and major ions in the piezometer groundwater and psammolittoral water.


1997 ◽  
Vol 54 (5) ◽  
pp. 1177-1189 ◽  
Author(s):  
H P Gross ◽  
W A Wurtsbaugh ◽  
C Luecke ◽  
P Budy

We investigated how epilimnetic fertilization would affect chlorophyll levels and light penetration of oligotrophic sockeye salmon (Oncorhynchus nerka) lakes and how the resulting self-shading would affect primary production of the prominent deep chlorophyll maxima (DCM) of the lakes. Epilimnetic nutrient additions to large mesocosms (330 m3) in Redfish Lake, Idaho, increased levels of primary productivity and chlorophyll a but decreased Secchi depths and light available in the metalimnion and hypolimnion. Redfish Lake and other Sawtooth Valley (Idaho) lakes had DCM in which the mean chlorophyll a peaks were 240-1000% of mean epilimnetic chlorophyll a concentrations. The DCM existed at low light levels and accounted for 36-72% of the lakes' primary production. Simulations using photosynthesis-irradiance (P-I) curves demonstrated that fertilization would increase predicted water column primary production by 75-101%. Most of this increase occurred in the epilimnion, with only a slight decrease occurring in the DCM as the result of increased shading.


2019 ◽  
Vol 16 (19) ◽  
pp. 3777-3792 ◽  
Author(s):  
Johnna M. Holding ◽  
Stiig Markager ◽  
Thomas Juul-Pedersen ◽  
Maria L. Paulsen ◽  
Eva F. Møller ◽  
...  

Abstract. Primary production on the coast and in Greenland fjords sustains important local and sustenance fisheries. However, unprecedented melting of the Greenland Ice Sheet (GrIS) is impacting the coastal ocean, and its effects on fjord ecology remain understudied. It has been suggested that as glaciers retreat, primary production regimes may be altered, rendering fjords less productive. Here we investigate patterns of primary productivity in a northeast Greenland fjord (Young Sound, 74∘ N), which receives run-off from the GrIS via land-terminating glaciers. We measured size fractioned primary production during the ice- free season along a spatial gradient of meltwater influence. We found that, apart from a brief under-ice bloom during summer, primary production remains low (between 50 and 200 mg C m−2 d−1) but steady throughout the ice-free season, even into the fall. Low productivity is due to freshwater run-off from land-terminating glaciers causing low light availability and strong vertical stratification limiting nutrient availability. The former is caused by turbid river inputs in the summer restricting phytoplankton biomass to the surface and away from the nitracline. In the outer fjord where turbidity plays less of a role in light limitation, phytoplankton biomass moves higher in the water column in the fall due to the short day length as the sun angle decreases. Despite this, plankton communities in this study were shown to be well adapted to low-light conditions, as evidenced by the low values of saturating irradiance for primary production (5.8–67 µmol photons m−2 s−1). With its low but consistent production across the growing season, Young Sound offers an alternative picture to other more productive fjords which have highly productive spring and late summer blooms and limited fall production. However, patterns of primary productivity observed in Young Sound are not only due to the influence from land-terminating glaciers but are also consequences of the nutrient-depleted coastal boundary currents and the shallow entrance sill, features which should also be considered when generalizing about how primary production will be affected by glacier retreat in the future.


2019 ◽  
Author(s):  
Michael R. Stukel ◽  
Ralf Goericke ◽  
Michael R. Landry

AbstractWe investigated the processes driving variability in primary productivity in the California Current Ecosystem (CCE) in order to develop an algorithm for predicting primary productivity from in situ irradiance, nutrient, and chlorophyll (chl) measurements. Primary productivity data from seven process cruises of the CCE Long-Term Ecological Research (CCE LTER) program were used to parameterize the algorithm. An initial algorithm was developed using only irradiance to predict chl-specific productivity was found to have model-data misfit that was correlated with NH4+ concentrations. We thus found that the best estimates of primary productivity were obtained using an equation including NH4+ and irradiance: PP/Chl = V0m×(1-exp(−α×PAR/V0m)×NH4/(NH4+KS), where PP/Chl is chlorophyll-specific primary production in units of mg C d−1 / mg Chl, PAR is photosynthetically active radiation (units of μEi m−2 s−1), NH4+ is in units of μmol L−1, V0m = 66.5 mg C d−1 / mg Chl, α = 1.5, and KS = 0.025 μmol L−1. We then used this algorithm to compute primary productivity rates for the CCE-P1706 cruise on which in situ primary productivity samples were not available. We compared these estimates to independent productivity estimates derived from protistan grazing dilution experiments and found excellent agreement.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Karen McLaughlin ◽  
Meredith D. A. Howard ◽  
George Robertson ◽  
Carly D. A. Beck ◽  
Minna Ho ◽  
...  

Coastal nitrogen enrichment is a global environmental problem that can influence acidification, deoxygenation, and subsequent habitat loss in ways that can be synergistic with global climate change impacts. In the Southern California Bight, an eastern boundary upwelling system, modeling of wastewater discharged through ocean outfalls has shown that it effectively doubles nitrogen loading to urban coastal waters. However, effects of wastewater outfalls on rates of primary production and respiration, key processes through which coastal acidification and deoxygenation are manifested, have not been directly linked to observed trends in ambient chlorophyll a, oxygen, or pH. Here, we follow a “reference-area” approach and compare nutrient concentrations and rates of nitrification, primary production, and respiration observed in areas within treated wastewater effluent plumes to areas spatially distant from ocean outfalls where we expected minimal plume influence. We document that wastewater nutrient inputs had an immediate, local effect on nutrient stoichiometry, elevating ammonium and nitrite concentrations by 4 µM and 0.2 µM (on average), respectively, and increasing dissolved nitrogen-to-phosphorus ratios 7-fold within the plume. Chlorophyll a increased slightly by 1 µg L–1 in the upper 60 m of the water column (on average), and δ13C and δ15 N of suspended particulate matter, an integrated measure of primary production, increased by 1.3% and 1%, respectively (on average). Nitrification rates within the plume increased by 17 nmol L–1 day–1 (on average). We did not observe a significant near-plume effect on δ18O and δ15 N of dissolved nitrate + nitrite, an indicator of nitrogen assimilation into biomass, on rates of primary production and respiration or on dissolved oxygen concentration, suggesting that any potential impact from wastewater on these key features is moderated by other factors, notably water mass mixing. These results indicate that a “reference-area” approach may be insufficient to document regional-scale impacts of nutrients.


Sign in / Sign up

Export Citation Format

Share Document