Mitochondrial DNA Analysis of Walleye Pollock, Theragra chalcogramma, from the Eastern Bering Sea and Shelikof Strait, Gulf of Alaska

1992 ◽  
Vol 49 (2) ◽  
pp. 319-326 ◽  
Author(s):  
Timothy J. Mulligan ◽  
Robert W. Chapman ◽  
Bonnie L. Brown

Increased fishing effort in the international waters of the Aleutian Basin has focused much interest on defining the stock structure of walleye pollock, Theragra chalcogramma, in the Bering Sea. Variation in mitochondrial DNA (mtDNA) was examined via restriction endonuclease digestions in 168 walleye pollock from three areas in the eastern Bering Sea and from Shelikof Strait, Gulf of Alaska. Nine endonucleases produced variant restriction patterns both within and among populations. A total of 50 restriction sites were revealed along the mtDNA molecule. Two dominant genotypes were found in 39 and 21 individuals, respectively. Fifty-one genotypes (78% of the total) were represented by a single specimen. Clustering of genetic distances suggests the existence of several walleye pollock stocks in the Bering Sea and Gulf of Alaska. Genetic divergence among stocks may be related to the prevailing current patterns found in these areas.

2011 ◽  
Vol 68 (6) ◽  
pp. 1297-1304 ◽  
Author(s):  
James N. Ianelli ◽  
Anne B. Hollowed ◽  
Alan C. Haynie ◽  
Franz J. Mueter ◽  
Nicholas A. Bond

Abstract Ianelli, J. N., Hollowed, A. B., Haynie, A. C., Mueter, F. J., and Bond, N. A. 2011. Evaluating management strategies for eastern Bering Sea walleye pollock (Theragra chalcogramma) in a changing environment. – ICES Journal of Marine Science, 68: 1297–1304. The impacts of climate change on fish and fisheries is expected to increase the demand for more accurate stock projections and harvest strategies that are robust to shifting production regimes. To address these concerns, we evaluate the performance of fishery management control rules for eastern Bering Sea walleye pollock stock under climate change. We compared the status quo policy with six alternative management strategies under two types of recruitment pattern simulations: one that follows temperature-induced trends and the other that follows a stationary recruitment pattern similar to historical observations. A subset of 82 Intergovernmental Panel on Climate Change climate models provided temperature inputs from which an additional 100 stochastic simulated recruitments were generated to obtain the same overall recruitment variability as observed for the stationary recruitment simulations. Results indicate that status quo management with static reference points and current ecosystem considerations will result in much lower average catches and an increased likelihood of fishery closures, should reduced recruitment because of warming conditions hold. Alternative reference point calculations and control rules have similar performance under stationary recruitment relative to status quo, but may offer significant gains under the changing environmental conditions.


2011 ◽  
Vol 68 (6) ◽  
pp. 1284-1296 ◽  
Author(s):  
Franz J. Mueter ◽  
Nicholas A. Bond ◽  
James N. Ianelli ◽  
Anne B. Hollowed

Abstract Mueter, F. J., Bond, N. A., Ianelli, J. N., and Hollowed, A. B. 2011. Expected declines in recruitment of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea under future climate change. – ICES Journal of Marine Science, 68: 1284–1296. A statistical model is developed to link recruitment of eastern Bering Sea walleye pollock (Theragra chalcogramma) to variability in late summer sea surface temperatures and to the biomass of major predators. The model is based on recent advances in the understanding of pollock recruitment, which suggest that warm spring conditions enhance the survival of early larvae, but high temperatures in late summer and autumn are associated with poor feeding conditions for young-of-year pollock and reduced recruitment in the following year. A statistical downscaling approach is used to generate an ensemble of late summer temperature forecasts through 2050, based on a range of IPCC climate projections. These forecasts are used to simulate future recruitment within an age-structured stock projection model that accounts for density-dependent effects (stock–recruitment relationship), the estimated effects of temperature and predation, and associated uncertainties. On average, recruitment in 2040–2050 should expectedly decline by 32–58% relative to a random recruitment scenario, depending on assumptions about the temperature relationship, the magnitude of density-dependence, and future changes in predator biomass. The approach illustrated here can be used to evaluate the performance of different management strategies and provide long-term strategic advice to managers confronted with a rapidly changing climate.


Sign in / Sign up

Export Citation Format

Share Document