Distinguishing between resident and migrating Atlantic salmon (Salmo salar) stocks by genetic stock composition analysis

1995 ◽  
Vol 52 (4) ◽  
pp. 665-674 ◽  
Author(s):  
Marja-Liisa Koljonen

The possibility of using the genetic stock identification (GSI) method to distinguish between individual Atlantic salmon (Salmo salar) stocks and stock groups in Finnish catches was studied. In the Baltic Sea, the Atlantic salmon is a target of a mixed-stock fishery, and information about stock composition would be valuable for the management of the species. The salmon catches on the Finnish west coast consist of two seasonally variable components: a group of northern stocks migrating through the area to the Baltic main basin and the resident Neva salmon. The migratory component includes two endangered wild stocks (Tornionjoki and Simojoki). The allele frequency differences at four polymorphic loci among the stocks allowed reliable catch composition estimates to be made of the migratory and resident components; one stock (Oulujoki) from the northern group could also be identified with reasonable accuracy. Northern migrating stocks accounted for over half the catches at the time of this study. The estimate of natural (nonhatchery) stocks was very low (3% in total).

2008 ◽  
Vol 65 (8) ◽  
pp. 1738-1748 ◽  
Author(s):  
Stefan Palm ◽  
Johan Dannewitz ◽  
Torbjörn Järvi ◽  
Marja-Liisa Koljonen ◽  
Tore Prestegaard ◽  
...  

Several studies have shown that fish shoals may consist of closely related individuals. It has been found, for example, that released out-migrating salmon smolts tend to aggregate with kin, including when sibling groups have been reared separately. We used genetic microsatellite markers to test whether “shoals” of adult Atlantic salmon ( Salmo salar ) during the marine phase (i.e., aggregations of fish caught in drift nets at offshore feeding areas in the Baltic Sea) consisted of closely related individuals (full-siblings, half-siblings). We found no evidence of kin cohesiveness related to shoals, however. Despite a weak overall tendency for individuals assigned to the same population (river or stock) to occur together, estimates of genetic relatedness in combination with consistent heterozygote deficiencies, and results from mixed-stock analyses and assignment tests collectively indicated that shoals consisted of unrelated fish from multiple populations.


2017 ◽  
Vol 74 (8) ◽  
pp. 2159-2169 ◽  
Author(s):  
Mikhail Ozerov ◽  
Juha-Pekka Vähä ◽  
Vidar Wennevik ◽  
Eero Niemelä ◽  
Martin-A. Svenning ◽  
...  

2018 ◽  
Vol 165 (10) ◽  
Author(s):  
Marja Keinänen ◽  
Reijo Käkelä ◽  
Tiina Ritvanen ◽  
Jukka Pönni ◽  
Hannu Harjunpää ◽  
...  

2019 ◽  
Vol 76 (6) ◽  
pp. 1379-1389 ◽  
Author(s):  
Martin-A Svenning ◽  
Morten Falkegård ◽  
Eero Niemelä ◽  
Juha-Pekka Vähä ◽  
Vidar Wennevik ◽  
...  

Abstract Combining detailed temporal and spatial catch data, including catch per unit effort, with a high-resolution microsatellite genetic baseline facilitated the development of stock-specific coastal migration models for the four largest Atlantic salmon (Salmo salar) populations, Målselv, Alta, Tana and Kola rivers, contributing to the Barents Sea mixed-stock fishery. Målselv salmon displayed a restricted coastal movement with 85% of the fish captured within 20 km of their natal river. Kola salmon also demonstrated limited coastal movements in Norwegian waters, with most (> 90%) caught in eastern Finnmark. Multi-sea-winter (MSW) Alta salmon were caught west of Alta fjord across a broader stretch of coast while one-sea-winter (1SW) fish migrated more extensively along the coast prior to river entry. Tana salmon, however, were detected over a broad expanse (600 km) of the North-Norwegian coast. For all populations MSW salmon dominating catches earlier in the season (May–June) while 1SW fish were more common from July to August. This study provides an example of how traditional catch and effort information may be combined with genetic methods to obtain insights into spatial and temporal changes in Atlantic salmon catch composition and their associated migration patterns in a mixed-stock coastal fishery.


2020 ◽  
Author(s):  
Fabian G. Weichert ◽  
Charlotte Axén ◽  
Lars Förlin ◽  
Pedro A. Inostroza ◽  
Ulrike Kammann ◽  
...  

2011 ◽  
Vol 68 (10) ◽  
pp. 2134-2144 ◽  
Author(s):  
Jaakko Mikkonen ◽  
Marja Keinänen ◽  
Michele Casini ◽  
Jukka Pönni ◽  
Pekka J. Vuorinen

Abstract Mikkonen, J., Keinänen, M., Casini, M., Pönni, J., and Vuorinen, P. J. 2011. Relationships between fish stock changes in the Baltic Sea and the M74 syndrome, a reproductive disorder of Atlantic salmon (Salmo salar). – ICES Journal of Marine Science, 68: 2134–2144. The M74 syndrome of Baltic salmon (Salmo salar), which appears as increased yolk-sac fry mortality (YSFM), impairs the reproduction of salmon stocks. Changes in the prey stocks of Baltic salmon in its two feeding areas, the southern Baltic Proper (BPr), where sprat (Sprattus sprattus) was the main prey species during the high incidence of M74, and the Bothnian Sea, where herring (Clupea harengus) is the dominant species, were analysed in relation to salmon growth and size and in relation to the incidence of M74. The high condition factor (CF > 1.05) of prespawning salmon predicted high YSFM. From the various stock factors of sprat and herring in the southern BPr, the biomass of sprat had the strongest positive relationships with the CF of prespawning salmon, and the total prey biomass with YSFM. It is concluded that the ample but unbalanced food resources for salmon in the BPr, primarily sprat, induce M74. By reducing the fishing pressure on cod (Gadus morhua) and by more effectively managing the sprat fishery in years when the cod stock is weak, the incidence of the M74 syndrome could be reduced and even prevented.


2006 ◽  
Vol 63 (7) ◽  
pp. 1274-1285 ◽  
Author(s):  
Marja-Liisa Koljonen

Abstract DNA-level information from an eight-loci microsatellite baseline database of 32 Atlantic salmon (Salmo salar) stocks was used with a Bayesian estimation method to assess the stock and stock group proportions of Finnish salmon catches in the Baltic Sea area. The proportions of seven stock groups, important to fisheries management, were assessed in catch samples taken between 2000 and 2005. In the Gulf of Bothnia area, the proportion of wild fish in catches showed an increasing trend in all areas until 2003, mainly because of the decrease in total catches caused by the relatively greater mortality of hatchery-reared fish compared with wild fish. In 2004, the total number of wild fish caught had also increased, indicating an increase in the abundance of wild stocks. In catches from the Åland Sea, the proportion of wild fish increased from 44% in 2000 to 70% in 2004, while the catch during the same period increased from 4628 to 7329 fish. In the Gulf of Finland, the local Neva salmon stock, which is released by Estonia, Finland, and Russia, made the largest contribution. In the western part of the Gulf of Finland, fish originating in the Baltic Main Basin also made a substantial contribution to catches. The threatened eastern Estonian and Russian wild stocks were recorded only in the western part of the Gulf of Finland, where the proportion of wild fish increased from 9% in 2003 to 19% in 2004.


BMC Genetics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 31 ◽  
Author(s):  
Andrew M Griffiths ◽  
Gonzalo Machado-Schiaffino ◽  
Eileen Dillane ◽  
Jamie Coughlan ◽  
Jose L Horreo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document