scholarly journals Coastal migration patterns of the four largest Barents Sea Atlantic salmon stocks inferred using genetic stock identification methods

2019 ◽  
Vol 76 (6) ◽  
pp. 1379-1389 ◽  
Author(s):  
Martin-A Svenning ◽  
Morten Falkegård ◽  
Eero Niemelä ◽  
Juha-Pekka Vähä ◽  
Vidar Wennevik ◽  
...  

Abstract Combining detailed temporal and spatial catch data, including catch per unit effort, with a high-resolution microsatellite genetic baseline facilitated the development of stock-specific coastal migration models for the four largest Atlantic salmon (Salmo salar) populations, Målselv, Alta, Tana and Kola rivers, contributing to the Barents Sea mixed-stock fishery. Målselv salmon displayed a restricted coastal movement with 85% of the fish captured within 20 km of their natal river. Kola salmon also demonstrated limited coastal movements in Norwegian waters, with most (> 90%) caught in eastern Finnmark. Multi-sea-winter (MSW) Alta salmon were caught west of Alta fjord across a broader stretch of coast while one-sea-winter (1SW) fish migrated more extensively along the coast prior to river entry. Tana salmon, however, were detected over a broad expanse (600 km) of the North-Norwegian coast. For all populations MSW salmon dominating catches earlier in the season (May–June) while 1SW fish were more common from July to August. This study provides an example of how traditional catch and effort information may be combined with genetic methods to obtain insights into spatial and temporal changes in Atlantic salmon catch composition and their associated migration patterns in a mixed-stock coastal fishery.

1995 ◽  
Vol 52 (4) ◽  
pp. 665-674 ◽  
Author(s):  
Marja-Liisa Koljonen

The possibility of using the genetic stock identification (GSI) method to distinguish between individual Atlantic salmon (Salmo salar) stocks and stock groups in Finnish catches was studied. In the Baltic Sea, the Atlantic salmon is a target of a mixed-stock fishery, and information about stock composition would be valuable for the management of the species. The salmon catches on the Finnish west coast consist of two seasonally variable components: a group of northern stocks migrating through the area to the Baltic main basin and the resident Neva salmon. The migratory component includes two endangered wild stocks (Tornionjoki and Simojoki). The allele frequency differences at four polymorphic loci among the stocks allowed reliable catch composition estimates to be made of the migratory and resident components; one stock (Oulujoki) from the northern group could also be identified with reasonable accuracy. Northern migrating stocks accounted for over half the catches at the time of this study. The estimate of natural (nonhatchery) stocks was very low (3% in total).


2017 ◽  
Vol 75 (2) ◽  
pp. 653-661 ◽  
Author(s):  
Eva Marita Ulvan ◽  
Anders Foldvik ◽  
Arne Johan Jensen ◽  
Bengt Finstad ◽  
Eva Bonsak Thorstad ◽  
...  

Abstract The return migration of adult Atlantic salmon was investigated by analysing recaptures of individuals tagged and released as smolts in the River Altaelva and the River Halselva using a catch per unit effort approach. Although the salmon were recaptured over a large area along the coastline (from >1100 km south to > 500 km northeast of their home rivers), the results indicated a relatively accurate homeward navigation for most individuals. The straying rate to rivers other than the home river was 9%. Multi-sea-winter salmon returned earlier in the season than one-sea-winter salmon, but the geographical distribution of recaptures did not differ. Recaptures were equally distributed north and south of the home rivers, implying that salmon were arriving to the coast both north and south of their home rivers and that they may have returned from different ocean areas. This was supported by the fact that several salmon were recaptured in both the southern and northern parts of the North Atlantic Ocean, including at the Faroes, south coast of Greenland, Svalbard and in the Barents Sea. This study supports the hypothesis that the coastal phase of the natal homing in migrating fish species is neither passive nor guided by currents alone.


2017 ◽  
Vol 74 (8) ◽  
pp. 2159-2169 ◽  
Author(s):  
Mikhail Ozerov ◽  
Juha-Pekka Vähä ◽  
Vidar Wennevik ◽  
Eero Niemelä ◽  
Martin-A. Svenning ◽  
...  

2017 ◽  
Vol 74 (3) ◽  
pp. 327-338 ◽  
Author(s):  
Juha-Pekka Vähä ◽  
Jaakko Erkinaro ◽  
Morten Falkegård ◽  
Panu Orell ◽  
Eero Niemelä

Addressing biocomplexity in fisheries management is a challenge requiring an ability to differentiate among distinct populations contributing to fisheries. We produced extensive genetic baseline data involving 36 sampling locations and 33 microsatellite markers, which allowed characterization of the genetic structure and diversity in a large Atlantic salmon (Salmo salar) population complex of the River Teno system, northernmost Europe. Altogether, we identified 28 hierarchically structured and genetically distinct population segments (global FST = 0.065) corresponding exceptionally well with their geographical locations. An assessment of factors affecting the stock identification accuracy indicated that the identification success is largely defined by the interaction of genetic divergence and the baseline sample sizes. The choice between the two statistical methods tested for performance in genetic stock identification, ONCOR and cBAYES, was not critical, albeit the latter demonstrated slightly higher identification accuracy and lower sensitivity to population composition of the mixture sample. The strong genetic structuring among populations together with a powerful marker system allowed for accurate stock identification of individuals and enabled assessment of stock compositions contributing to mixed-stock fisheries.


2017 ◽  
Vol 74 (4) ◽  
pp. 429-434 ◽  
Author(s):  
Garrett J. McKinney ◽  
James E. Seeb ◽  
Lisa W. Seeb

A common challenge for fisheries management is resolving the relative contribution of closely related populations where accuracy of genetic assignment may be limited. An overlooked method for increasing assignment accuracy is the use of multi-SNP (single nucleotide polymorphism) haplotypes rather than single-SNP genotypes. Haplotypes increase power for detecting population structure, and loci derived from next-generation sequencing methods often contain multiple SNPs. We evaluated the utility of multi-SNP haplotyping for mixture analysis in western Alaska Chinook salmon (Oncorhynchus tshawytscha). Multi-SNP haplotype data increased the accuracy of mixture analysis for closely related populations by up to seven percentage points relative to single-SNP genotype data for a set of 500 loci; 90% accuracy was achievable with as few as 150 loci with multi-SNP haplotypes but required at least 300 loci with single-SNP genotypes. Individual assignment to reporting groups showed an even greater increase in accuracy of up to 17 percentage points when multi-SNP haplotypes were used. Haplotyping multiple SNPs shows promise to improve the accuracy of assigning unknown fish to population of origin whenever haplotype data are available.


2009 ◽  
Vol 66 (12) ◽  
pp. 2040-2051 ◽  
Author(s):  
Marika Gauthier-Ouellet ◽  
Mélanie Dionne ◽  
François Caron ◽  
Tim L. King ◽  
Louis Bernatchez

Mixed-stock fisheries refer to the exploitation of admixed fish stocks coming from different origins. We identified the North American origin of 2835 Atlantic salmon ( Salmo salar ) in the Greenland mixed-stock fishery during 11 years (1995–2006) at three localities using 13 microsatellites. The study included 52 baseline populations representing nine genetically distinct regional groups. The contribution of each group ranged from <1% (Maine) to 40% (Southern Québec). Decreasing temporal contributions were observed for Southern Québec (–22.0%) and New Brunswick (–17.4%), whereas an increasing contribution for Labrador (+14.9%) was observed during the time course of the study. The estimated regional contribution to the Greenland fishery was significantly correlated to the number of multi-sea-winter salmon regionally produced in 2002 (r = 0.79) and 2004 (r = 0.92). No difference in contribution was found between the three Greenland sampling localities. Ungava and Southern Québec regions showed the highest mortality estimates caused by the fishery, ranging from 12.10% to 18.08%, for both years tested. No regional group was overrepresented in landings compared with their respective productivity. Yet, management precautions should still be taken as the fishery strongly selects large females, which could have evolutionary impacts on populations over the long term.


2017 ◽  
Vol 187 ◽  
pp. 110-119 ◽  
Author(s):  
John Gilbey ◽  
Vidar Wennevik ◽  
Ian R. Bradbury ◽  
Peder Fiske ◽  
Lars Petter Hansen ◽  
...  

1995 ◽  
Vol 47 (sa) ◽  
pp. 186-199 ◽  
Author(s):  
P. Galvin ◽  
S. McKinnell ◽  
J. B. Taggart ◽  
A. Ferguson ◽  
M. O'Farrell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document