Increased spontaneous DNA damage in Cu/Zn superoxide dismutase (SOD1) deficient Drosophila

Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1029-1035 ◽  
Author(s):  
R C Woodruff ◽  
J P Phillips ◽  
A J Hilliker

The superoxide dismutases (SODs) protect oxygen-using cells against reactive oxygen species, the potentially toxic by-products of respiration, oxidative metabolism, and radiation. We have previously shown that genetic disruption of CuZn SOD (SOD1) in Drosophila imparts a recessive phenotype of reduced lifespan, infertility, and hypersensitivity to oxidative stress. We now show that the absence of SOD1 increases spontaneous genomic damage. The increase in spontaneous mutation rate occurs in SOD1-null mutants in somatic cells as well as in the germ line. Further, we show that specific DNA repair-defective mutations, which are easily tolerated in SOD1+ flies, lead to high mortality when introduced into the SOD1-null homozygous mutant background.Key words: Drosophila melanogaster, superoxide dismutase, mutations, germ and somatic cells, lethal and somatic mutations, reactive oxygen.

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1483-1490 ◽  
Author(s):  
Aimee L Jackson ◽  
Lawrence A Loeb

Abstract The stability of the human genome requires that mutations in the germ line be exceptionally rare events. While most mutations are neutral or have deleterious effects, a limited number of mutations are required for adaptation to environmental changes. Drake has provided evidence that DNA-based microbes have evolved a mechanism to yield a common spontaneous mutation rate of ~0.003 mutations per genome per replication (Drake 1991). In contrast, mutation rates of RNA viruses are much larger (Holland et al. 1982) and can approach the maximum tolerable deleterious mutation rate of one per genome (Eigen and Schuster 1977; Eigen 1993). Drake calculates that lytic RNA viruses display spontaneous mutation rates of approximately one per genome while most have mutation rates that are approximately 0.1 per genome (Drake 1993). This constancy of germline mutation rates among microbial species need not necessarily mean constancy of the somatic mutation rates. Furthermore, there need not be a constant rate for somatic mutations during development. In this review, we consider mutations in cancer, a pathology in which there appears to be an increase in the rate of somatic mutations throughout the genome. Moreover, within the eukaryotic genome, as in microbes, there are “hot-spots” that exhibit unusually high mutation frequencies. It seems conceivable to us that many tumors contain thousands of changes in DNA sequence. The major question is: how do these mutations arise, and how many are rate-limiting for tumor progression?


Endocrinology ◽  
2006 ◽  
Vol 147 (7) ◽  
pp. 3391-3397 ◽  
Author(s):  
J. Maier ◽  
H. van Steeg ◽  
C. van Oostrom ◽  
S. Karger ◽  
R. Paschke ◽  
...  

Thyroid tumors are a frequent finding not only in iodine-deficient regions. They are predominantly characterized by somatic genetic changes (e.g. point mutations or rearrangements). Because slow thyroid proliferation is a apparent contradiction to a high frequency of tumor initiation, we characterized mutational events in thyroid. First we studied the frequency of certain base exchanges in somatic TSH receptor (TSHR) mutations and determined the spontaneous mutation rate in thyroid and liver. Then we applied different protocols of the comet assay to quantify genomic DNA damage and conducted immunohistochemistry for 8-oxoguanine as a molecular marker for oxidative stress. Among 184 somatic mutations of the human TSHR found in thyroid tumors, C→T transitions had a unexpectedly high frequency (>32%). The mutation rate in thyroid is 8–10 times higher than in other organs. The comet assay detected increased levels of oxidized pyrimidine (2- to 3-fold) and purine (2- to 4-fold) in thyroid, compared with liver and lung, and a 1.6-fold increase of oxidized purine, compared with spleen. Immunohistochemistry revealed high levels of 8-oxoguanine in thyroid epithelial cells. We have shown a strikingly high mutation rate in the thyroid. Furthermore, results of the comet assay as well as immunohistochemistry suggest that oxidative DNA modifications are a likely cause of the higher mutation rate. It is possible that free radicals resulting from reactive oxygen species in the thyroid generate mutations more frequently. This is also supported by the spectrum of somatic mutations in the TSHR because more frequent base changes could stem from oxidized base adducts that we detected in the comet assay and with immunohistochemistry.


Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 723-730 ◽  
Author(s):  
P Chary ◽  
D Dillon ◽  
A L Schroeder ◽  
D O Natvig

Abstract Enzymatic superoxide-dismutase activity is believed to be important in defense against the toxic effects of superoxide. Although superoxide dismutases are among the best studied proteins, numerous questions remain concerning the specific biological roles of the various superoxide-dismutase types. In part, this is because the proposed damaging effects of superoxide are manifold, ranging from inactivation of certain metabolic enzymes to DNA damage. Studies with superoxide-deficient mutants have proven valuable, but surprisingly few such studies have been reported. We have constructed and characterized Neurospora crassa mutants that are null for sod-1, the gene that encodes copper-zinc superoxide dismutase. Mutant strains are sensitive to paraquat and elevated oxygen concentrations, and they exhibit an increased spontaneous mutation rate. They appear to have near wild-type sensitive to near- and far-UV, heat shock and gamma-irradiation. Unlike the equivalent Saccharomyces cerevisiae mutant and the sodA sodB double mutant of Escherichia coli, they do not exhibit aerobic auxotrophy. These results are discussed in the context of an attempt to identify consensus phenotypes among superoxide dismutase-deficient mutants. N. crassa sod-1 null mutant strains were also employed in genetic and subcellular fractionation studies. Results support the hypothesis that a single gene (sod-1), located between Fsr-12 and leu-3 on linkage group I, is responsible for most or all CuZn superoxide dismutase activity in this organism.


Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yingying Yang ◽  
Anthony L Johnson ◽  
Leland H Johnston ◽  
Wolfram Siede ◽  
Errol C Friedberg ◽  
...  

Abstract RAD3 functions in DNA repair and transcription in Saccharomyces cerevisiae and particular rad3 alleles confer a mutator phenotype, possibly as a consequence of defective mismatch correction. We assessed the potential involvement of the Rad3 protein in mismatch correction by comparing heteroduplex repair in isogenic rad3-1 and wild-type strains. The rad3-1 allele increased the spontaneous mutation rate but did not prevent heteroduplex repair or bias its directionality. Instead, the efficiency of mismatch correction was enhanced in the rad3-1 strain. This surprising result prompted us to examine expression of yeast mismatch repair genes. We determined that MSH2, but not MLH1, is transcriptionally regulated during the cell-cycle like PMSl, and that rad3-1 does not increase the transcript levels for these genes in log phase cells. These observations suggest that the rad3-1 mutation gives rise to an enhanced efficiency of mismatch correction via a process that does not involve transcriptional regulation of mismatch repair. Interestingly, mismatch repair also was more efficient when error-editing by yeast DNA polymerase δ was eliminated. We discuss our results in relation to possible mechanisms that may link the rad3-1 mutation to mismatch correction efficiency.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1993-1999 ◽  
Author(s):  
Peter D Keightley

Much population genetics and evolution theory depends on knowledge of genomic mutation rates and distributions of mutation effects for fitness, but most information comes from a few mutation accumulation experiments in Drosophila in which replicated chromosomes are sheltered from natural selection by a balancer chromosome. I show here that data from these experiments imply the existence of a large class of minor viability mutations with approximately equivalent effects. However, analysis of the distribution of viabilities of chromosomes exposed to EMS mutagenesis reveals a qualitatively different distribution of effects lacking such a minor effects class. A possible explanation for this difference is that transposable element insertions, a common class of spontaneous mutation event in Drosophila, frequently generate minor viability effects. This explanation would imply that current estimates of deleterious mutation rates are not generally applicable in evolutionary models, as transposition rates vary widely. Alternatively, much of the apparent decline in viability under spontaneous mutation accumulation could have been nonmutational, perhaps due to selective improvement of balancer chromosomes. This explanation accords well with the data and implies a spontaneous mutation rate for viability two orders of magnitude lower than previously assumed, with most mutation load attributable to major effects.


2010 ◽  
Vol 110 (6) ◽  
pp. 633-637 ◽  
Author(s):  
Chartchalerm Isarankura-Na-Ayudhya ◽  
Sakda Yainoy ◽  
Tanawut Tantimongcolwat ◽  
Leif Bülow ◽  
Virapong Prachayasittikul

Nature ◽  
1957 ◽  
Vol 180 (4599) ◽  
pp. 1433-1434 ◽  
Author(s):  
LARS EHEENBERG ◽  
GÜNTER VON EHRENSTEIN ◽  
ARNE HEDGRAN

2017 ◽  
Vol 30 (3) ◽  
pp. 159-163
Author(s):  
Tania Bubela ◽  
Yael Mansour ◽  
Dianne Nicol

Genome editing technologies promise therapeutic advances for genetic diseases. We discuss the ethical and societal issues raised by these technologies, including their use in preclinical research, their potential to address mutations in somatic cells, and their potential to make germ line alterations that may be passed to subsequent generations. We call for a proportionate response from health leaders based on a realistic assessment of benefits, risks, and timelines for clinical translation.


Genome ◽  
1989 ◽  
Vol 31 (1) ◽  
pp. 118-121 ◽  
Author(s):  
Matthias R. Wabl ◽  
Hans-Martin Jäck ◽  
R. C. von Borstel ◽  
Charles M. Steinberg

The authors have developed a method to measure the rate of spontaneous mutations taking place in IgH, the gene encoding the immunoglobulin heavy chain. When an amber chain-termination codon mutates to a sense codon, translation of the polypeptide chain will be completed, and mutant cells producing the heavy chain can be detected with a fluorescent labelled antibody. The protocol used is the compartmentalization test which minimizes any effect of selection. In subclones of the pre-B lymphocyte line 18–81, the spontaneous mutation rate in the part of IgH encoding the variable region is somewhat greater than 10−5 mutations per base pair per generation. This supports the hypothesis that hypermutation is not dependent on cell stimulation by an antigen. In a hybrid between a cell of this line and a myeloma (which represents the terminal stage of the B-cell lineage), the mutation rate was too low to be determined by this test, less than 10−9. When the same loss to gain procedure system was used with an opal chain-terminating codon in the part of IgH encoding the constant region (Cμ), a high rate of reversion by deletion was found. Long (more than one exon) and short (less than one exon) deletions occurred at rates of 1.7 × 10−5 and 1.4 × 10−7 per generation, respectively. It is thought that the high rate of deletion is not related to somatic hypermutation but rather to DNA rearrangement during the heavy-chain class switch, which is occurring in these pre-B cell lines. The point mutation rate was too low to be detected above the background of deletion mutants, less than 5 × 10−8. The immunoglobulin mutator system works weakly, if at all, on two other, nonimmunoglobulin, genes tested: B2m (β2 microglobulin) and the gene for ouabain resistance.Key words: pre-B lymphocyte, B lymphocyte, spontaneous mutation rate, compartmentalization test, deletion mutation, hypermutation.


Sign in / Sign up

Export Citation Format

Share Document