Y CHROMOSOME HYPERPLOIDY AND MALE FERTILITY IN DROSOPHILA MELANOGASTER

1979 ◽  
Vol 21 (1) ◽  
pp. 21-24 ◽  
Author(s):  
John H. Williamson ◽  
Eva Meidinger

Drosophila melanogaster males with two supernumerary Y chromosomes, i.e. triplo-Y males, are completely sterile. Their mating behavior is normal, and spermatogenesis and spermiogenesis appear normal, but no sperm are transferred. Most, if not all, of the detrimental effects of a third Y chromosome on male fertility are attributable to the long arm of the Y chromosome.

Genetics ◽  
1990 ◽  
Vol 125 (3) ◽  
pp. 527-534 ◽  
Author(s):  
A G Clark

Abstract Deficiency mapping with Y autosome translocations has shown that the Y chromosome of Drosophila melanogaster carries genes that are essential to male fertility. While the qualitative behavior of these lesions provides important insight into the physiological importance of the Y chromosome, quantitative variation in effects on male fertility among extant Y chromosomes in natural populations may have a significant effect on the evolution of the Y chromosome. Here a series of 36 Y chromosome replacement lines were tested in two ways designed to detect subtle variation in effects on male fertility and total male fitness. The first test involved crossing males from the 36 lines to an excess of females in an attempt to measure differences in male mating success (virility) and male fecundity. The second test challenged males bearing each of the 36 Y chromosomes to competition in populations with males bearing a standard, phenotypically marked (BsY) chromosome. These tests indicated that the Y chromosome lines did not differ significantly in either male fertility or total fitness, but that interactions with autosomes approached significance. A deterministic population genetic model was developed allowing Y autosome interaction in fertility, and it is shown that, consistent with the experimental observations, this model cannot protect Y-linked polymorphism.


1993 ◽  
Vol 90 (23) ◽  
pp. 11132-11136 ◽  
Author(s):  
J Gepner ◽  
T S Hays

A clone encoding a portion of the highly conserved ATP-binding domain of a dynein heavy-chain polypeptide was mapped to a region of the Drosophila melanogaster Y chromosome. Dyneins are large multisubunit enzymes that utilize the hydrolysis of ATP to move along microtubules. They were first identified as the motors that provide the force for flagellar and ciliary bending. Seven different dynein heavy-chain genes have been identified in D. melanogaster by PCR. In the present study, we demonstrate that one of the dynein genes, Dhc-Yh3, is located in Y chromosome region h3, which is contained within kl-5, a locus required for male fertility. The PCR clone derived from Dhc-Yh3 is 85% identical to the corresponding region of the beta heavy chain of sea urchin flagellar dynein but only 53% identical to a cytoplasmic dynein heavy chain from Drosophila. In situ hybridization to Drosophila testes shows Dhc-Yh3 is expressed in wild-type males but not in males missing the kl-5 region. These results are consistent with the hypothesis that the Y chromosome is needed for male fertility because it contains conventional genes that function during spermiogenesis.


Genetics ◽  
1981 ◽  
Vol 98 (3) ◽  
pp. 529-548
Author(s):  
James A Kennison

ABSTRACT Cytological and genetic analyses of 121 translocations between the Y chromosome and the centric heterochromatin of the X chromosome have been used to define and localize six regions on the Y chromosome of Drosophila melanogaster necessary for male fertility. These regions are associated with nonfluorescent blocks of the Y chromosome, as revealed using Hoechst 33258 or quinacrine staining. Each region appears to contain but one functional unit, as defined by failure of complementation among translocations with breakpoints within the same block. The distribution of translocation breakpoints examined appears to be nonrandom, in that breaks occur preferentially in the nonfluorescent blocks and not in the large fluorescent blocks.


2020 ◽  
Author(s):  
Benjamin A Sandkam ◽  
Pedro Almeida ◽  
Iulia Darolti ◽  
Benjamin Furman ◽  
Wouter van der Bijl ◽  
...  

AbstractSex chromosomes form once recombination is halted between the X and Y chromosomes. This loss of recombination quickly depletes Y chromosomes of functional content and genetic variation, which is thought to severely limit their potential to generate adaptive diversity. We examined Y diversity in Poecilia parae, where males occur as one of five discrete morphs, all of which shoal together in natural populations where morph frequency has been stable for over 50 years. Each morph utilizes different complex reproductive strategies, and differ dramatically from each other in color, body size, and mating behavior. Remarkably, morph phenotype is passed perfectly from father to son, indicating there are five Y haplotypes segregating in the species, each of which encodes the complex male morph characteristics. Using linked-read sequencing on multiple P. parae females and males of all five morphs from natural populations, we found that the genetic architecture of the male morphs evolved on the Y chromosome long after recombination suppression had occurred with the X. Comparing Y chromosomes between each of the morphs revealed that although the Ys of the three minor morphs that differ predominantly in color are highly similar, there are substantial amounts of unique genetic material and divergence between the Ys of the three major morphs that differ in reproductive strategy, body size and mating behavior. Taken together, our results reveal the extraordinary ability of evolution to overcome the constraints of recombination loss to generate extreme diversity resulting in five discrete Y chromosomes that control complex reproductive strategies.Significance StatementThe loss of recombination on the Y chromosome is thought to limit the adaptive potential of this unique genomic region. Despite this, we describe an extraordinary case of Y chromosome adaptation in Poecilia parae. This species contains five co-occurring male morphs, all of which are Y-linked, and which differ in reproductive strategy, body size, coloration, and mating behavior. The five Y-linked male morphs of P. parae evolved after recombination was halted on the Y, resulting in five unique Y chromosomes within one species. Our results reveal the surprising magnitude to which non-recombining regions can generate adaptive diversity and have important implications for the evolution of sex chromosomes and the genetic control of sex-linked diversity.


Genetics ◽  
1981 ◽  
Vol 99 (1) ◽  
pp. 49-64
Author(s):  
Rezaur Rahman ◽  
Dan L Lindsley

ABSTRACT The genetic limits of sixty-four deficiencies in the vicinity of the euchromatic-heterochromatic junction of the X chromosome were mapped with respect to a number of proximal recessive lethal mutations. They were also tested for male fertility in combination with three Y chromosomes carrying different amounts of proximal X-chromosome-derived material (BSYy+, y+Ymal126 and y  +  Ymal  +). All deficiencies that did not include the locus of bb and a few that did were male-fertile in all male-viable Df(1)/Dp(1;Y) combinations. Nineteen bb deficiencies fell into six different classes by virtue of their male-fertility phenotypes when combined with the duplicated Y chromosomes. The six categories of deficiencies are consistent with a formalism that invokes three factors or regions at the base of the X, one distal and two proximal to bb, which bind a substance critical for precocious inactivation of the X chromosome in the primary spermatocyte. Free duplications carrying these regions or factors compete for the substance in such a way that, in the presence of such duplications, proximally deficient X chromosomes are unable to command sufficient substance for proper control of X-chromosome gene activity preparatory to spermatogenesis. We conclude that there is no single factor at the base of the X that is required for the fertility of males whose genotype is otherwise normal.


Genetics ◽  
1987 ◽  
Vol 115 (1) ◽  
pp. 143-151
Author(s):  
Andrew G Clark

ABSTRACT Functional variation among Y chromosomes in natural populations of Drosophila melanogaster was assayed by a segregation study. A total of 36 Y chromosomes was extracted and ten generations of replacement backcrossing yielded stocks with Y chromosomes in two different genetic backgrounds. Eleven of the Y chromosomes were from diverse geographic origins, and the remaining 25 were from locally captured flies. Segregation of sexes in adult offspring was scored for the four possible crosses among the two backgrounds with each Y chromosome. Although the design confounds meiotic drive and effects on viability, statistical partitioning of these effects reveals significant variation among lines in Y chromosome segregation. Results are discussed in regards to models of Y-linked segregation and viability effects, which suggest that Y-linked adaptive polymorphism is unlikely.


Genetics ◽  
1993 ◽  
Vol 134 (2) ◽  
pp. 531-543 ◽  
Author(s):  
O Danilevskaya ◽  
A Lofsky ◽  
E V Kurenova ◽  
M L Pardue

Abstract The HeT-A element is a transposable element with an apparent role in the structure of the telomeres of Drosophila melanogaster chromosomes. HeT-A transposition is the earliest event detected in healing of broken ends; HeT-A is also found on telomeres of unbroken chromosomes. Sequences with homology to HeT-A are never detected in euchromatic regions; however, clusters of HeT-A-related sequences occur in nontelomeric regions of the heterochromatic Y chromosome. Analysis of two of these Y-associated clusters shows them to be significantly different in structure from telomeric HeT-A elements, although the regions of shared sequence have > 80% sequence identity in all cases. Telomeric HeT-A elements occur in chains, with the elements in the same orientation but variably truncated at their external ends and irregularly interspersed with unrelated sequences. In contrast, the nontelomeric Y elements are regular tandem repeats of parts of the HeT-A sequence joined to unrelated sequences which are not the same in the two clusters studied. The sequence structures suggest that the nontelomeric clusters on the Y chromosome do not arise by the same transposition mechanism that forms the telomeric clusters; instead the clusters on the Y may arise by a mechanism that is used more generally in the evolution of Y chromosomes. Although the telomeric and nontelomeric clusters appear to be formed differently, both are enriched in parts of the HeT-A sequence which may be important in the structure of heterochromatin.


Genetics ◽  
1978 ◽  
Vol 90 (1) ◽  
pp. 93-104
Author(s):  
P Ripoll ◽  
A Garcia-Bellido

ABSTRACT The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions.


Development ◽  
1987 ◽  
Vol 101 (Supplement) ◽  
pp. 117-118
Author(s):  
Jonathan Wolfe

From the moment that the major part of the mammalian Y chromosome ceased to recombine with the X, the action of Muller's ratchet began to whittle away at it to remove all but the essential genes. Consequently, by comparison with their respective X homologues, both human and mouse Y chromosomes are relatively small and probably contain very few genes in a fabric of accumulated junk. Nevertheless, molecular biologists have not been deterred from searching for Y-linked genes and in recent years this has become an increasingly popular pastime. Although hard to find, any Y-linked genes are likely to play important roles in either sex determination or male fertility, a fact which has spurred the search. How many genes are likely to be present on the chromosome? If we accept the hypothesis that most genes are preceded by an HpaII tiny fragment (HTF) island, we can place an upper limit on the number of genes by considering the frequency with which such islands occur on the chromosome.


Sign in / Sign up

Export Citation Format

Share Document