A spontaneous translocation that transfers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat

Genome ◽  
1988 ◽  
Vol 30 (3) ◽  
pp. 289-292 ◽  
Author(s):  
E. D. P. Whelan ◽  
G. E. Hart

The wheat curl mite (Eriophyes tulipae Keifer) is the vector of wheat streak mosaic virus, a damaging disease of winter wheat. A translocation between a common wheat (Triticum aestivum L.) chromosome and a group 6 chromosome (6Ag) from decaploid Agropyron elongatum (Host) Beauv. resulted in transfer of resistance to colonization by the wheat curl mite. Transmission of resistance through the pollen and the egg were similar and not significantly different from 50%. The frequency of resistance in the F2 generation (65.6%) was lower than expected for a single, dominant gene. In the F2, 26.7% of the resistant plants were homozygous for resistance. Selfed progeny from monosomic and disomic F1 plants from crosses between the translocation line and monosomics for 6A and 6B segregated with frequencies similar to normal F2 progeny but the progeny of monosomics for 6D were primarily resistant (93.2%). Crosses between the translocation line and chromosome 6D telocentrics and studies of four enzymes that are encoded by genes on the group 6 homoeologous chromosomes showed that the translocated chromosome consists of the q arm of chromosome 6D of 'Rescue' and the p arm of chromosome 6 of A. elongatum. Because the new stock was derived from a double monosomic, the translocation was probably a Robertsonian fusion of misdivided centromeres. The resistance is being backcrossed into winter wheat.Key words: Agropyron elongatum, Thinopyron, Elytrigia, Lophopyrum, Robertsonian translocation, isozyme structural genes, wheat curl mite.

1986 ◽  
Vol 28 (2) ◽  
pp. 294-297 ◽  
Author(s):  
E. D. P. Whelan ◽  
R. L. Conner ◽  
J. B. Thomas ◽  
A. D. Kuzyk

A translocation between a common wheat (Triticum aestivum L.) chromosome and chromosome 6 of Elytrigia pontica (Podp.) Holub conferred resistance to feeding by Eriophyes (= Aceria) tulipae Keifer, the mite vector of wheat streak mosaic virus and the wheat spot mosaic agent. Resistance was dominant, but differential transmission occurred between the pollen and the egg. Transmission of resistance through the pollen was low, about 3% in 'Cadet', 'Rescue', and 'Winalta', but significantly higher in 'Norstar' (9.1%). Significant differences also were detected in transmission through the egg. 'Cadet' had the highest transmission (50.9%) and 'Rescue' the lowest (40.5%). However, there were no significant differences among varieties in the frequencies of resistance (50.3–54.5%) in the F2. Less than 10% of the F2 plants were homozygous resistant. Selfed progeny from monosomic or disomic F1 plants from crosses between the homozygous translocation and group-6 monosomics all segregated for susceptibility. Meiotic studies of 25 susceptible F2 plants from these F1 monosomics showed that 21 were either monosomic or disomic and only 4 were nullisomic, indicating that the translocation did not involve any of the group-6 homoeologues. The translocation is considered to be a noncompensating translocation involving a whole arm of chromosome 6 of E. pontica.Key words: wheat, mite (wheat curl), translocation, Triticum.


Genome ◽  
1988 ◽  
Vol 30 (3) ◽  
pp. 293-298 ◽  
Author(s):  
Ernest D. P. Whelan

One of the group 6 chromosomes from Agropyron elongatum (Host) Beauv. confers resistance to colonization by the wheat curl mite (Aceria tulipae Keifer). The transmission of this chromosome was evaluated when added to or substituted for the group 6 homoeologues in two cultivars of common wheat (Triticum aestivum L.). Female transmission of the alien chromosome was similar for all substitutions (8.9%) but significantly less than expected. Male transmission (39.7%) differed among the substituted chromosomes and also was lower than expected except for the substitution involving chromosome 6A. These reduced transmission frequencies were reflected in lower than expected resistance in the F2 progeny. Both male (14.5%) and female (5.2%) transmission of the alien chromosome were reduced in monosomic additions. Meiotic analyses detected all expected F2 cytotypes but some of their frequencies differed among the substituted chromosomes. A possible wheat –alien translocation was detected in BC1F1 progeny.Key words: Agropyron elongatum, Thinopyrum, Elytrigia, Lyphopyrum, wheat curl mite, chromosome substitution.


Genome ◽  
1989 ◽  
Vol 32 (6) ◽  
pp. 1033-1036 ◽  
Author(s):  
E. D. P. Whelan ◽  
J. B. Thomas

Wheat streak mosaic is a destructive disease of wheat caused by wheat streak mosaic virus. Wheat streak mosaic virus is vectored by the wheat curl mite (Eriophyes tulipae Keifer). A single dominant gene conditioning resistance to colonization by the mite vector was transferred from Aegilops squarrosa L. to a synthetic amphiploid (AC PGR 16635) and then to common wheat (Triticum aestivum L. em. Thell.) through backcrossing. Because of its origin, the transferred gene was probably located in the D genome. Monosomics 1D through 7D were crossed with a homozygous resistant line with the pedigree Norstar*4/AC PGR 16635. Both 41- and 42-chromosome F1 plants were identified and selfed to obtain F2 seed. The observed proportion of resistant and susceptible plants in 6 of the 7 F2 families from monosomics, and in all 7 of the F2s from disomics, did not deviate significantly from a 3:1 ratio. However, the proportion of resistant plants from the F2 of monosomic 6D was significantly (p < 0.01) in excess of this ratio and susceptible plants from this family were nullisomic for all or part of 6D. In crosses with standard ditelosomic stocks, telocentrics from a ditelosomic derivative of susceptible individual of this F2 paired with 6D(L) but failed to pair with 6D(S). The F2 of heterozygous resistant plants that were monotelodisomic for the long arm of 6D(L) segregated approximately 19 resistant to 1 susceptible, while those from monotelodisomics for the short arm segregated normally (3 resistant to 1 susceptible, p = 0.27). These data show that the gene Cmcl for mite resistance is located on the short arm of chromosome 6D. Key words: Aegilops squarrosa, wheat streak mosaic virus.


Genome ◽  
1992 ◽  
Vol 35 (3) ◽  
pp. 468-473 ◽  
Author(s):  
Ernest D. P. Whelan ◽  
G. B. Schaalje

Aneuploid seedlings of the common wheat (Triticum aestivum L.) cv. Chinese Spring (CS) that are nullisomic or telosomic for the long arm of chromosome 6D are susceptible to chilling injury under prolonged exposure to 6 °C; normal euploids or telosomics for the short arm are not. Studies of seedling grown for various durations at 20 °C prior to growth at 6 °C showed that chilling injury was a juvenile phenomenon and that the extent of injury was inversely proportional to the duration of growth at 20 °C to a maximum of about 14 days. When reciprocal crosses were made between susceptible 6D nullisomics or long-arm ditelocentrics of CS and resistant 6D nullisomics of three spring and one winter wheat cultivars, progenies from aneuploid F1 hybrids all segregated for susceptibility as a recessive trait and at a frequency approximating a dihybrid ratio; no cytoplasmic effects were detected. Aneuploids of the group 6 homoeologues of the spring wheat cvs. Cadet and Rescue were resistant, as were group 6 whole-chromosome substitutions of eight different donor wheats in the recipient parent CS and 56 other euploids tested. Genes for resistance to chilling injury appear to involve the group 6 chromosomes and the short arm of 6D in Chinese Spring. In contrast with chilling injury, all aneuploid lines with only four doses of the "corroded" loci on group 6 chromosomes exhibited chlorotic symptoms.Key words: Triticum aestivum, chilling injury.


Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 525-529 ◽  
Author(s):  
V. D. Keppenne ◽  
P. S. Baenziger

The blue aleurone trait has been suggested as a useful genetic marker in wheat (Triticum aestivum L.). However, little information is available on its transmission in diverse backgrounds and on its use to identify hybrid seed. UC66049, a hexaploid spring wheat with a spontaneous translocation that included the gene for the blue aleurone trait (Ba) from Agropyron elongatum (Host) P.B. (synonymous with Elytrigia pontica (Podp.) Holub), was crossed to seven wheat cultivars to test the transmission of the trait. UC66049 was crossed to male-sterile red wheat lines to evaluate the blue aleurone trait as a marker for confirming hybridity. Ba segregated as a dominant gene that was transmitted normally through the male and female gametes. For 6 of 7 crosses with diverse pedigrees, we experienced problems with misclassification of the aleurone color in the F2 seed generation, determined by the F3 seed family data. The blue aleurone trait is a good genetic marker; however, progeny testing may be needed to confirm the F2 genotypes in some environments or genetic backgrounds. Moreover, Ba is useful in determining the amount of controlled hybridity as opposed to self-fertility and (or) outcrossing in genetic male-sterile wheat lines. The use of Ba to confirm doubled haploidy was proposed.Key words: Agropyron elongatum, seed color, genetics, Triticum aestivum, Elytrigia pontica.


1967 ◽  
Vol 10 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Roy Johnson ◽  
Gordon Kimber

1. Complex hybrids were produced having twenty-nine chromosomes, consisting of one telocentric and twenty complete chromosomes of T. aestivum (2n = 6x = 42), seven complete chromosomes of Ae. speltoides (2n = 2x = 14) and one telocentric chromosome derived from A. elongatum (2n = 10x = 70). The presence of the Ae. speltoides genome permitted pairing between homoeologous chromosomes at meiosis and the behaviour of the two telocentric chromosomes was observed.2. The A. elongatum chromosome was seen to pair with chromosomes homoeologous to those of group 6. There was no evidence that it paired with chromosomes of any other group.3. When the A. elongatum telocentric and those of 6A and 6D occurred in the same configuration it was evident that the telocentrics 6A and 6D were for corresponding chromosome arms, and the A. elongatum telocentric for the opposite arm.4. The average rate of pairing was much lower for the A. elongatum telocentric than for wheat telocentrics. Previous studies had indicated very good genetic compensation of the A. elongatum chromosome for chromosomes 6A and 6D. It was therefore indicated that genetic equivalence and pairing affinity were not closely related in this case. Some implications of this are discussed.


2018 ◽  
Vol 69 (4) ◽  
pp. 354 ◽  
Author(s):  
Jialin Guo ◽  
Gaisheng Zhang ◽  
Huali Tang ◽  
Yulong Song ◽  
Shoucai Ma ◽  
...  

Variety DUOII is a multi-ovary line of common wheat (Triticum aestivum L.) that has two or three pistils and three stamens. The multi-ovary trait is controlled by a dominant gene, the expression of which can be suppressed by the special heterogeneous cytoplasm of line TeZhiI (TZI). TZI has the nucleus of common wheat and the cytoplasm of Aegilops. DUOII (♀) × TZI (♂) shows the multi-ovary trait, whereas TZI (♀) × DUOII (♂) shows the mono-ovary trait. DNA methylation affects gene expression and plays a crucial role in organ and tissue differentiation. In order to study the relationship between DNA methylation and the suppression of the multi-ovary gene, we used methylation-sensitive amplification polymorphisms (MSAP) to assess the DNA methylation status of the reciprocal crosses. Genome-wide, 14 584 CCGG sites were detected and the overall methylation levels were 31.10% and 30.76% in the respective crosses DUOII × TZI and TZI × DUOII. Compared with DUOII × TZI, TZI × DUOII showed 672 sites (4.61%) in which methylation–demethylation processes occurred. The results showed that the special heterogeneous cytoplasm significantly changed DNA methylation, and this might have suppressed the multi-ovary gene. The results provide insight into the changing patterns of DNA methylation in the suppression of the multi-ovary gene, and provide essential background for further studies on the underlying mechanisms of heterogeneous cytoplasm suppression of the expression of the multi-ovary gene in wheat.


Genome ◽  
1990 ◽  
Vol 33 (3) ◽  
pp. 400-404 ◽  
Author(s):  
E. D. P. Whelan ◽  
O. M. Lukow

The wheat curl mite (Eriophyes tulipae Keifer) is the vector of both wheat streak mosaic virus and the wheat spot mosaic agent, which cause damaging diseases of wheat (Triticum aestivum). A spontaneous translocation between chromosome 6A of the hard spring wheat cultivar 'Cadet' and a group 6 chromosome (6Ag) from decaploid Agropyron elongatum (Host) Beauv. resulted in a transfer of resistance to colonization by the wheat curl mite from 6Ag to a wheat chromosome. Transmission of resistance was 50.2% through the egg and 28.2% through the pollen. In segregating progenies, 64.1% of the plants were resistant, and 25.5% of the resistant plants were homozygous resistant. Meiotic pairing of hybrids from crosses between the translocation line and ditelocentrics for chromosome 6A suggested that the translocated chromosome consisted of the short arm of 'Cadet' 6A and the p or short arm of chromosome 6Ag of A. elongatum that confers mite resistance. This postulation was confirmed by electrophoretic patterns of seed endosperm proteins; the translocation line produced α-gliadins coded by genes on the short arm of 'Cadet' 6A as well as β-gliadins coded by genes on the short arm of A. elongatum chromosome 6.Key words: electrophoresis, gliadins, wheat streak mosaic virus, Agropyron elongatum, Robertsonian translocation.


Genome ◽  
1991 ◽  
Vol 34 (1) ◽  
pp. 144-150 ◽  
Author(s):  
Ernest D. P. Whelan

Winter wheat (Triticum aestivum L.) requires vernalization (exposure to temperatures between 1 and 10 °C) to induce heading. Vernalization also induces earlier heading of many spring wheat varieties. Studies of the spring wheat cv. Chinese Spring identified cytogenetic lines of the group 6 chromosomes that were susceptible to chilling injury when seedlings were grown at 6 °C for 8 weeks. Lines that were either ditelocentric for the long arm of chromosome 6D or nullisomic for 6D were susceptible, while those ditelocentric for the short arm of 6D were not. Neither cv. Chinese Spring nor ditelocentrics for either the long or short arms of chromosomes 6A or 6B were susceptible. Susceptible plants selected from F2 seedlings of plants monosomic for 6D were nullisomics. Doublemonotelocentric F1 hybrids from crosses between plants ditelocentric for 6DS or 6DL were resistant, but susceptible F2 seedlings from this cross were either nullisomic for 6D or telocentric for the long arm. The dominant gene(s) that prevents chilling injury at 6 °C appears to be on the short arm of chromosome 6D of cv. Chinese Spring wheat.Key words: chilling injury, wheat, telocentrics, nullisomics, vernalization.


Sign in / Sign up

Export Citation Format

Share Document