gliadin protein
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 1)

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1743
Author(s):  
Roberta Paris ◽  
Giuseppe Petruzzino ◽  
Michele Savino ◽  
Vanessa De Simone ◽  
Donatella B. M. Ficco ◽  
...  

Very recently, the genome of the modern durum wheat cv. Svevo was fully sequenced, and its assembly is publicly available. So, we exploited the opportunity to carry out an in-depth study for the systematic characterization of the γ-gliadin gene family in the cv. Svevo by combining a bioinformatic approach with transcript and protein analysis. We found that the γ-gliadin family consists of nine genes that include seven functional genes and two pseudogenes. Three genes, Gli-γ1a, Gli-γ3a and Gli-γ4a, and the pseudogene Gli-γ2a* mapped on the A genome, whereas the remaining four genes, Gli-γ1b, Gli-γ2b, Gli-γ3b and Gli-γ5b, and the pseudogene Gli-γ4b* mapped on the B genome. The functional γ-gliadins presented all six domains and eight-cysteine residues typical of γ-gliadins. The Gli-γ1b also presented an additional cysteine that could possibly have a role in the formation of the gluten network through binding to HMW glutenins. The γ-gliadins from the A and B genome differed in their celiac disease (CD) epitope content and composition, with the γ-gliadins from the B genome showing the highest frequency of CD epitopes. In all the cases, almost all the CD epitopes clustered in the central region of the γ-gliadin proteins. Transcript analysis during seed development revealed that all the functional γ-gliadin genes were expressed with a similar pattern, although significant differences in the transcript levels were observed among individual genes that were sometimes more than 60-fold. A progressive accumulation of the γ-gliadin fraction was observed in the ripening seeds that reached 34% of the total gliadin fraction at harvest maturity. We believe that the insights generated in the present study could aid further studies on gliadin protein functions and future breeding programs aimed at the selection of new healthier durum wheat genotypes.


2021 ◽  
Author(s):  
Kunj Bihari Gupta ◽  
Anil Kumar Mantha ◽  
Monisha Dhiman

Abstract An imbalance between the production of oxygen and nitrogen free radicals and their degradation by the antioxidant system are the major causative factors for the wheat intolerance diseases. In the present study, we have examined the wheat gliadin protein-induced oxidative and nitrosative stress and downstream responses in the human intestinal cell lines viz. HCT-116 and HT-29. The role of phytochemical curcumin was investigated to alleviate the gliadin associated cellular damages. The focus of the study was to identify the role of key DNA repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in gliadin protein-induced toxicity in the intestine, which may be crucial for establishing the gut-associated diseases. Reactive oxygen species (ROS); reactive nitrogen species (RNS); mitochondrial ROS; mitochondrial trans-membrane potential; protein carbonylation; lipid peroxidation; and the oxidized DNA base damage was estimated in HCT-116 and HT-29 cells after 24 h treatment of 160 µg/ml of gliadin, 10 µM of curcumin and its combination. In addition, the transcriptional expression and enzymatic activities of antioxidants (SOD; Catalase; and GSH) were measured in the in these cells. Furthermore, the cross-talk between the nuclear factor erythroid 2-related factor-2 (Nrf-2) and the multifunctional enzyme APE1 was analyzed by the immunofluorescent based imaging and co-immunoprecipitation assays. The endonuclease activity of APE1 and the DNA-protein interaction of NRF-2 with ARE was analyzed by using electrophoretic mobility shift assay (EMSA) with the nuclear lysates of HCT-116 and HT-29 cells. Results suggest that 3 h pre-treatment of curcumin followed by the treatment of gliadin protein for 24 h time protect the HCT-116 and HT-29 cells via (1) decreasing the ROS, RNS, oxidative stress, mitochondrial ROS, recuperate mitochondrial trans-membrane potential; (2) reestablishing the cellular antioxidant defence systems; (3) enhancing the DNA-repair via APE1 and which further activates the ARE elements via activation of Nrf-2. In conclusion, wheat gliadin induces the oxidative/nitrosative stress, mitochondrial damage and damages the cellular biomolecules; hence is associated with the disease pathogenesis and tissue damage in wheat intolerance diseases. The gliadin induced stress and its consequences are significantly reduced by the pre-treatment of curcumin via DNA repair pathways and oxidative stress which is evident through the interaction between two essential proteins of these pathways APE1 and Nrf-2 hence suggesting the role of curcumin based management of wheat intolerance diseases like celiac disease.


2021 ◽  
Vol 160 (6) ◽  
pp. S-55-S-56
Author(s):  
Madison Hill ◽  
Runa Watkins ◽  
Elaine Leonard Puppa ◽  
Jaylyn Waddell ◽  
Samra Blanchard ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2027
Author(s):  
Maria Vittoria Barone ◽  
Salvatore Auricchio

Celiac disease (CD) is a type of inflammatory chronic disease caused by nutrients such as gliadin that induce a TC (T cell)-mediated response in a partially known genetical background in an environment predisposed to inflammation, including viruses and food. Various experimental and clinical observations suggest that multiple agents such as viruses and bacteria have some common, inflammatory pathways predisposing individuals to chronic inflammatory diseases including celiac disease (CD). More recently, a Western diet and lifestyle have been linked to tissue inflammation and increase in chronic inflammatory diseases. In CD, the gliadin protein itself has been shown to be able to induce inflammation. A cooperation between viruses and gliadin is present in vitro and in vivo with common mechanisms to induce inflammation. Nutrients could have also a protective effect on CD, and in fact the anti-inflammatory Mediterranean diet has a protective effect on the development of CD in children. The possible impact of these observations on clinical practice is discussed.


Biosensors ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 90
Author(s):  
Alessandra Zanut ◽  
Alessandro Cian ◽  
Nicola Cefarin ◽  
Alessandro Pozzato ◽  
Massimo Tormen

Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5–10 μg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 675 ◽  
Author(s):  
Malalgoda ◽  
Ohm ◽  
Simsek

Ancient grains have gained renewed interest in the last few years due to their perceived nutritional benefits. The goal of this study was to examine the presence of celiac epitopes in different ancient grains and determine differences in the gliadin protein profile of such grains. To investigate celiac epitopes, an untargeted mass spectrometric method was used, and the gliadin protein profile was studied using reverse phase-HPLC. Our findings show that celiac epitopes can be detected in wheat-related ancient grains, such as einkorn, emmer, and Kamut, indicating that these ancient grains have the potential to elicit the immune response associated with celiac disease. Additionally, the results showed that the gliadin protein composition is significantly different between ancient grain species, which could result in varying functional properties in end-use applications.


2018 ◽  
Vol 6 (4) ◽  
pp. 413-425
Author(s):  
Yun Gyeong Lee ◽  
Sang Chul Choi ◽  
Yuna Kang ◽  
Chon-Sik Kang ◽  
Changsoo Kim
Keyword(s):  

2018 ◽  
Vol 55 (12) ◽  
pp. 4841-4850
Author(s):  
Asima Hamid ◽  
S. A. Mallick ◽  
Gupta Moni ◽  
M. Iqbal Jeelani ◽  
Gupta Sachin

2018 ◽  
Vol 81 ◽  
pp. 91-98 ◽  
Author(s):  
Kunj Bihari Gupta ◽  
Shishir Upadhyay ◽  
Ram Gopal Saini ◽  
Anil K. Mantha ◽  
Monisha Dhiman

Proteomes ◽  
2013 ◽  
Vol 1 (2) ◽  
pp. 25-39 ◽  
Author(s):  
Ashutosh Singh ◽  
Shirin Munshi ◽  
Vijaya Raghavan

Sign in / Sign up

Export Citation Format

Share Document