Inheritance of the blue aleurone trait in diverse wheat crosses

Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 525-529 ◽  
Author(s):  
V. D. Keppenne ◽  
P. S. Baenziger

The blue aleurone trait has been suggested as a useful genetic marker in wheat (Triticum aestivum L.). However, little information is available on its transmission in diverse backgrounds and on its use to identify hybrid seed. UC66049, a hexaploid spring wheat with a spontaneous translocation that included the gene for the blue aleurone trait (Ba) from Agropyron elongatum (Host) P.B. (synonymous with Elytrigia pontica (Podp.) Holub), was crossed to seven wheat cultivars to test the transmission of the trait. UC66049 was crossed to male-sterile red wheat lines to evaluate the blue aleurone trait as a marker for confirming hybridity. Ba segregated as a dominant gene that was transmitted normally through the male and female gametes. For 6 of 7 crosses with diverse pedigrees, we experienced problems with misclassification of the aleurone color in the F2 seed generation, determined by the F3 seed family data. The blue aleurone trait is a good genetic marker; however, progeny testing may be needed to confirm the F2 genotypes in some environments or genetic backgrounds. Moreover, Ba is useful in determining the amount of controlled hybridity as opposed to self-fertility and (or) outcrossing in genetic male-sterile wheat lines. The use of Ba to confirm doubled haploidy was proposed.Key words: Agropyron elongatum, seed color, genetics, Triticum aestivum, Elytrigia pontica.

Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 729-734 ◽  
Author(s):  
R C Leach ◽  
I S Dundas ◽  
A Houben

The physical length of the rye segment of a 4BS.4BL–5RL translocation derived from the Cornell Wheat Selection 82a1-2-4-7 in a Triticum aestivum 'Chinese Spring' background was measured using genomic in situ hybridization (GISH) and found to be 16% of the long arm. The size of this translocation was similar to previously published GISH measurements of another 4BS.4BL–5RL translocation in a Triticum aestivum 'Viking' wheat background. Molecular maps of both 4BS.4BL–5RL translocations for 2 different wheat backgrounds were developed using RFLP analysis. The locations of the translocation breakpoints of the 2 4BS.4BL–5RL translocations were similar even though they arose in different populations. This suggests a unique property of the region at or near the translocation breakpoint that could be associated with their similarity and spontaneous formation. These segments of rye chromosome 5 also contain a gene for copper efficiency that improves the wheat's ability to cope with low-copper soils. Genetic markers in these maps can also be used to screen for copper efficiency in bread wheat lines derived from the Cornell Wheat Selection 82a1 2-4-7.Key words: Triticum aestivum, wheat–rye translocation, homoeologous group 4, homoeologous group 5, GISH, comparative map, copper efficiency, hairy peduncle.


2019 ◽  
Vol 20 (24) ◽  
pp. 6252 ◽  
Author(s):  
Junchang Li ◽  
Jing Zhang ◽  
Huijuan Li ◽  
Hao Niu ◽  
Qiaoqiao Xu ◽  
...  

Male sterility is a valuable trait for genetic research and production application of wheat (Triticum aestivum L.). NWMS1, a novel typical genic male sterility mutant, was obtained from Shengnong 1, mutagenized with ethyl methane sulfonate (EMS). Microstructure and ultrastructure observations of the anthers and microspores indicated that the pollen abortion of NWMS1 started at the early uninucleate microspore stage. Pollen grain collapse, plasmolysis, and absent starch grains were the three typical characteristics of the abnormal microspores. The anther transcriptomes of NWMS1 and its wild type Shengnong 1 were compared at the early anther development stage, pollen mother cell meiotic stage, and binucleate microspore stage. Several biological pathways clearly involved in abnormal anther development were identified, including protein processing in endoplasmic reticulum, starch and sucrose metabolism, lipid metabolism, and plant hormone signal transduction. There were 20 key genes involved in the abnormal anther development, screened out by weighted gene co-expression network analysis (WGCNA), including SKP1B, BIP5, KCS11, ADH3, BGLU6, and TIFY10B. The results indicated that the defect in starch and sucrose metabolism was the most important factor causing male sterility in NWMS1. Based on the experimental data, a primary molecular regulation model of abnormal anther and pollen developments in mutant NWMS1 was established. These results laid a solid foundation for further research on the molecular mechanism of wheat male sterility.


Genome ◽  
1989 ◽  
Vol 32 (1) ◽  
pp. 30-34 ◽  
Author(s):  
E. D. P. Whelan

Phenotypic markers of chromosomes are useful for determining chromosome behavior in cytogenetic studies. Transmission of an alien, telocentric addition from Agropyron tricophorum (Link) Richt. that confers purple aleurone pigment and blue seed color was evaluated in common wheat (Triticum aestivum L.). Twenty-five of 2570 seeds from bagged heads of eight ditelocentric-addition sister plants were almost white rather than blue. Seven of these 25 seeds and 4 of 336 blue seeds segregated 41.4%:58.6% blue:white. Meiotic analyses showed that all plants grown from these 11 seeds were spontaneously produced monotelocentric additions. Transmission of the alien telocentric chromosome through the egg and the pollen was estimated to be 19.5 and 14.3%, respectively, based on BC1F1 seed color. About 28% of F2 and F3 seeds were blue; of these 7.4% were ditelocentric additions. The frequency of blue seed in F2 progeny from spontaneous monotelocentric additions (41.4%) was significantly greater than that of monotelocentric additions from controlled crosses (28%). Penetrance of the blue seed color gene(s) associated with the alien telocentric chromosome was good. Misclassification of seed color for 1595 BC1F1 seeds was less than 3% based on BC1F2 progeny.Key words: Agropyron tricophorum.


Mammalia ◽  
2016 ◽  
Vol 80 (6) ◽  
Author(s):  
Alecia M. Kiszonas ◽  
E. Patrick Fuerst ◽  
Luther Talbert ◽  
Jamie Sherman ◽  
Craig F. Morris

AbstractWheat (


2019 ◽  
Author(s):  
Jiali Ye ◽  
Xuetong Yang ◽  
Zhiquan Yang ◽  
Wei Li ◽  
Qi Liu ◽  
...  

Abstract Background: Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. The specific expression of PG genes in anthers may be significant for male sterility research and hybrid wheat breeding, but it has not been characterized in wheat (Triticum aestivum L.). Results: We systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified and renamed as TaPG01–113 based on their chromosomal positions. The PG genes are unequally distributed on 21 chromosomes and classified according to six categories from A–F. Analysis of the gene structures and conserved motifs demonstrated that the Class C and D TaPGs have relatively short gene sequences and a small number of introns. Class E TaPGs are the least conserved and lack conserved domain III. Polyploidy and segmental duplications in wheat were mainly responsible for the expansion of the wheat PG gene family. Predictions of cis-elements indicate that TaPGs have a wide range of functions, including the responses to light, hypothermia, anaerobic conditions, and hormonal stimulation, as well as being involved in meristematic tissue expression. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics. Twelve spike-specific TaPGs were screened using RNA-seq data and verified by qRT-PCR in the sterile and fertile anthers of thermo-sensitive male-sterile wheat. Four important candidate genes were identified as involved in the male fertility determination process. In fertile anthers, TaPG09 may be involved in the separation of pollen. TaPG87 and TaPG95 could play important roles in anther dehiscence. TaPG93 may be related to pollen development and pollen tube elongation. Conclusions: We analyzed the wheat PG gene family and identified four important TaPGs with differential expression levels in the wheat fertility conversion process. Our findings may facilitate functional investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.


2018 ◽  
Vol 69 (5) ◽  
pp. 469 ◽  
Author(s):  
Hongzhan Liu ◽  
Junsheng Wang ◽  
Chaoqiong Li ◽  
Lin Qiao ◽  
Xueqin Wang ◽  
...  

Male reproductive development in higher plants is highly sensitive to various stressors, including high temperature (HT). In this study, physiological male-sterile plants of wheat (Triticum aestivum L.) were established using HT induction. The physiological changes and expression levels of genes mainly related to carbohydrate metabolism and sporopollenin in male-sterile processes were studied by using biological techniques, including iodine–potassium iodide staining, paraffin sectioning, scanning electron microscopy (SEM) and fluorescent quantitative analysis. Results of paraffin sectioning and SEM revealed that parts of HT male-sterile anthers, including the epidermis and tapetum, were remarkably different from those of normal anthers. The expression levels of TaSUT1, TaSUT2, IVR1 and IVR5 were significantly lower than of normal anthers at the early microspore and trinucleate stages. The RAFTIN1 and TaMS26 genes may contribute to biosynthesis and proper ‘fixation’ of sporopollenin in the development of pollen wall; however, their expression levels were significantly higher at the early tetrad stage and early microspore stage in HT sterile anthers. The recently cloned MS1 gene was expressed at the early tetrad and early microspore stages but not at the trinucleate stage. Moreover, this gene showed extremely significant, high expression in HT sterile anthers compared with normal anthers. These results demonstrate that HT induction of wheat male sterility is probably related to the expression of genes related to carbohydrate metabolism and sporopollenin metabolism. This provides a theoretical basis and technological approach for further studies on the mechanisms of HT induction of male sterility.


Sign in / Sign up

Export Citation Format

Share Document