Occurrence and mechanisms of 2n egg formation in 2x potato

Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 975-982 ◽  
Author(s):  
Joanna E. Werner ◽  
Stanley J. Peloquin

The occurrence of 2n eggs in 381 haploids from six tetraploid parents and in 127 plants representing five diploid wild species was detected using 2x × 4x crosses. Sixty-two percent of the haploids and 24% of the wild-species plants produced 2n eggs. Twenty-six haploids and 17 species plants that gave high seed set in 2x × 4x crosses were examined cytologically to determine the frequency and mechanisms of 2n egg formation. There was significant variation in the frequency of 2n eggs among haploids (7–57%) and among species plants (4.9–57.3%). Five mechanisms of 2n egg formation were identified: synaptic variant (genetically first division restitution); delayed meiotic division (first division restitution and second division restitution); omission of the second division (the prevalent mechanism, second division restitution); irregular anaphase II (second division restitution); and failure of second cytokinesis (second division restitution). 2n eggs can be formed by more than one mechanism within a clone. The occurrence of 2n eggs in wild species and the higher frequency of 2n eggs in haploids than in wild species indicate that sexual polyploidization has been involved in the origin and evolution of polyploid series in potato. The high frequency of 2n eggs in both haploids and diploid wild species allows generation of haploid-species hybrids that produce 2n eggs. These hybrids can then be used in the 2x × 4x and 2x × 2x breeding schemes.Key words: haploids, wild species, 2n gametes, first division restitution, second division restitution.


Genome ◽  
1992 ◽  
Vol 35 (5) ◽  
pp. 741-745 ◽  
Author(s):  
Joanna E. Werner ◽  
David S. Douches ◽  
Rosanna Freyre

The ratio of the first division restitution (FDR) to second division restitution (SDR) 2n eggs was estimated in 4182t, a haploid (2n = 2x = 24) of Solanum tuberosum L. that produces 2n eggs by the two modes. The segregation of three genes previously mapped relative to their centromeres, Pgm-2 (2.0 cM), Mdh-1 (33.5 cM), and 6-Pgdh-3 (30.1 cM) was analyzed in the tetraploid offspring of a 2x × 4x cross. Based on the segregation of the Pgm-2 locus, 39.7% of the progeny originated from FDR 2n eggs and 60.3% from SDR. Segregation patterns of the two distal loci within the FDR-derived 4x subpopulation indicated that the gene–centromere recombination rate during megasporogenesis was significantly reduced for Mdh-1 when compared with a previous estimate during microsporogenesis. In the SDR-derived 4x subpopulation, the gene–centromere recombination rates for Mdh-1 and 6-Pgdh-3 were not significantly different from previous estimates. Tetraploid progeny generated from one 2x × 4x cross where the 2x parent produces 2n gametes by two modes can be used to make an unbiased comparison of the potential breeding value of FDR and SDR gametes.Key words: potato, megasporogenesis, first division restitution, second division restitution, isozyme.



Genetics ◽  
1995 ◽  
Vol 139 (4) ◽  
pp. 1797-1803
Author(s):  
J L David ◽  
P Boudec ◽  
A Gallais

Abstract A model is proposed to describe the genetic value of 4x-2x hybrids resulting from crosses between tetraploid genitors and diploid genitors that produce 2n gametes. The model takes into account the genetic consequences of the First Division Restitution (FDR) and Second Division Restitution (SDR) meiosis, particularly on the homozygosity level that 2n gametes contribute to 4x-2x hybrids. As genes can be identical by descent, numerous parameters are needed in the classical approach to describe the inbreeding effects on the mean and variance of 4x-2x hybrids. Using the concept of test value, the model allows a large decrease in the number of required parameters. The model gives the components of genetic variance and usual covariances between relatives using these synthetic parameters. The model is then used to study the efficiency of a recurrent breeding scheme to improve diploid genitors for their combining ability with tetraploid genitors. It appears that, in presence of dominance, ignoring the meiosis pattern will lead to an overestimation of additive variance and then of genetic advance. Some genetic considerations on the differences between FDR and SDR mechanisms lead us to suggest an experimental comparison of their respective advantages and disadvantages for the type of considered recurrent selection. An experimental crossing design is proposed to obtain estimates of the genetic parameters needed for this comparison.



Genome ◽  
1992 ◽  
Vol 35 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Kazuo Watanabe ◽  
Carlos Arbizu ◽  
P. E. Schmiediche

The wild potato species Solanum acaule (acl) was used as a model of a disomic tetraploid Solanum species to develop systematic methods of germplasm enhancement for disomic tetraploid species. The objective was to develop a genetically efficient method to overcome the inherent technical problems encountered in the utilization of disomic tetraploid wild species. Accessions of acl were selected from CIP's wild germplasm collection and from the collection of University of Birmingham, with emphasis on genetic attributes such as PLRV resistance and (or) PSTV resistance. Four methods were tested: (i) triploids from crosses between 4x acl × 2x potato were selected for 2n gametes production and were crossed to tetraploids or to diploids with 2n egg production; (ii) axillary buds of triploid hybrids were treated with colchicine to double chromosome numbers to generate hexaploids; (iii) in vitro chromosome doubling to obtain hexaploids from triploid hybrids; and furthermore (iv) the selected acl clones were directly crossed to tetraploid potatoes followed by a combination of second compatible pollinations with IvP 35 and subsequent embryo rescue. The combination of second compatible pollination and embryo rescue was found to be the most genetically efficient method for the utilization of the valuable genetic attributes of acl.Key words: inter-EBN crosses, ploidy manipulation, polyploid, potato breeding, wild species



Euphytica ◽  
1982 ◽  
Vol 31 (3) ◽  
pp. 885-893 ◽  
Author(s):  
M. Company ◽  
H. T. Stalker ◽  
J. C. Wynne


2004 ◽  
Vol 81 (5) ◽  
pp. 335-339 ◽  
Author(s):  
Shelley H. Jansky ◽  
Georgia L. Davis ◽  
Stanley J. Peloquin


1986 ◽  
Vol 28 (4) ◽  
pp. 581-586 ◽  
Author(s):  
W. A. Parrott ◽  
R. R. Smith

The endosperm balance number (EBN) hypothesis was first advanced to explain results from interspecific crosses in Solanum and later in Impatiens. According to the EBN hypothesis, normal endosperm development following intra- or inter-specific crosses depends on having a ratio of two EBNs from the female to one EBN from the male in the endosperm tissue. EBNs may differ among related species. Successful hybrids can be obtained between species with the same EBN. The ploidy level of an individual species can be varied to modify its EBN, making it cross compatible with a species sharing its modified EBN. Interspecific crosses within Trifolium have been limited and difficult. Crosses reported in the literature, including evidence from our own study, suggest that EBN is operating in Trifolium and have been used to assign EBN numbers to some clover species. The use of 2n eggs enabled two species, differing in EBN, to be crossed. An understanding of the EBN mechanism that operates in Trifolium should make successful interspecific hybrids easier to obtain in the future.Key words: endosperm balance number, hybrids (interspecific), 2n gametes, Trifolium.



Author(s):  
V Nikova ◽  
R Vladova

AbstractThe results of our experiments executed to obtain tobacco male sterile lines through interspecific hybridization are summarized. Ten wild species from the genus Nicotiana: N. excelsior (exc), N. amplexicaulis (amp), N. rustica (rus), Nicotianaglauca (gla), N. velutina (vel), N. benthamiana (ben), N. maritima (mar), N. paniculata (pan), N. longiflora (lon) and N. africana (afr) were used as cytoplasmic donors and N. tabacum, cv. HarmanliiskaBasma (HB) as a donor of the nucleus. Genetic effects of cytoplasmic-nuclear interaction of the studied species are discussed. Our results suggested that cytoplasmic male sterility (CMS) was expressed when the cytoplasms of the above mentioned wild Nicotiana species were combined with the nucleus of N. tabacum. The 10 sources of CMS obtained in tobacco were characterized by altered flower phenotypes. Flowers are classified into types according the stamen, pistil and corolla modification. All these CMS sources were backcrossed to Oriental tobaccos, cvs. Tekne, Nevrokop B-12, Kroumovgrad 90 and Djebel 576, to develop corresponding CMS lines. The investigated cytoplasms produced compete male sterility in all those cultivars. The CMS lines preserved flower types, specific for every “sterile” cytoplasm. The extent of male organ modifications varied from apparently normal (but pollenless) stamens in CMS (pan), (afr), some plants of (vel) (mar) through different degrees of malformations (shriveled anther on shortened filaments (lon), pinnate-like anthers on filaments of normal length (amp), petal - (ben), pistil- or stigma-like structures (rus), (gla)) to lack of male reproductive organs in (exc) and in some plants of (vel), (mar), (rus) and (gla). Most of the above mentioned cytoplasms had normal female gametophyte and good seed productivity. Alterations of the pistils were observed in CMS (rus), (exc) and (ben) causing reduction of the seed set. Electrophoresis of seed proteins of the tobacco cultivars and their CMS lines also suggested that the nuclei of wild species was entirely displaced by the nucleus of N. tabacum. CMS lines with cytoplasms of N. velutina, N. maritima, N. paniculata, N. longiflora and N. amplexicaulis were selected as suitable for seed production in tobacco.



Genome ◽  
2008 ◽  
Vol 51 (8) ◽  
pp. 638-643 ◽  
Author(s):  
Deepmala Sehgal ◽  
Vijay Rani Rajpal ◽  
Soom Nath Raina

The identity of the wild progenitor of one of the most important oil crop species, Carthamus tinctorius (2n = 2x = 24), commonly known as safflower, has been the subject of numerous studies at morphological, biochemical, cytogenetic, and biosystematic levels, but no definitive conclusions have been made. The nuclear, mitochondrial, and chloroplast genomes of the two botanical varieties of C. tinctorius, C. tinctorius var. tinctorius and C. tinctorius var. inermis, and two wild species, C. palaestinus and C. oxyacantha , were assayed at the nucleotide sequence level and by DNA markers. The nuclear and mitochondrial DNA assays were not helpful in conclusively identifying the diploid ancestor of C. tinctorius. The chloroplast DNA diversity, on the other hand, unambiguously provided new and novel evidence that C. palaestinus and C. oxyacantha contributed their plastomes to the evolution of C. tinctorius var. inermis and C. tinctorius var. tinctorius, respectively. This study, therefore, affirms a startling revelation of a rare event of two wild species contributing to the origin and evolution of safflower, a major world oilseed crop about whose genetics very little is known.





1985 ◽  
Vol 62 (9) ◽  
pp. 479-487 ◽  
Author(s):  
Shelley A. Hermundstad ◽  
S. J. Peloquin


Sign in / Sign up

Export Citation Format

Share Document