Presence of various rye-specific repeated DNA sequences on the midget chromosome of rye

Genome ◽  
1994 ◽  
Vol 37 (4) ◽  
pp. 619-624 ◽  
Author(s):  
Rama S. Kota ◽  
Bikram S. Gill ◽  
Scot H. Hulbert

The chromosome 1R of rye, or the midget chromosome, is necessary for plump, viable seed development and fertility restoration in the alloplasmic line with rye cytoplasm and a hexaploid wheat nucleus. The midget chromosome of rye represents 1/15th of the physical length of the chromosome 1R of rye. C-banding analysis indicated that the centromeric and pericentric region (approximately 30% physical length) of the midget chromosome is heterochromatic and the distant 70% physical length is euchromatic. These data suggest that the midget chromosome may represent the pericentric region of the long arm of chromosome 1R. In contrast with earlier reports, our results indicate that an array of rye-specific repeated sequences (both dispersed and tandem) are present on the midget chromosome. Various rye-specific repeated DNA sequences that are present on the midget chromosome will be useful in constructing a long-range map and studying the genomic organization of the midget chromosome. It is unclear if any of these repeated DNA sequences are involved in the origin of the midget chromosome.Key words: midget chromosome, pericentric region, repeated DNA sequences, rye telomere associated sequence.

Genomics ◽  
1992 ◽  
Vol 14 (2) ◽  
pp. 462-469 ◽  
Author(s):  
Cort S. Madsen ◽  
Dineke H. de Kloet ◽  
Jean E. Brooks ◽  
Siwo R. de Kloet

Genome ◽  
1992 ◽  
Vol 35 (4) ◽  
pp. 621-626 ◽  
Author(s):  
Peter M. Rogowsky ◽  
Ken W. Shepherd ◽  
Peter Langridge

A novel type of polymerase chain reaction (PCR) marker was developed for the mapping of cereal rye (Secale cereale). Primer pairs were synthesized targeting the insertion sites of three individual copies of the R173 family of rye specific repeated DNA sequences. While one primer was derived from a sequence within the respective R173 element, the second primer corresponded to a flanking region. The complex banding patterns obtained in rye allowed not only the mapping of the three R173 elements to certain chromosome regions of 1RS (the short arm of rye chromosome 1) but also the mapping of an additional 3–10 easily identifiable bands per primer pair to other rye chromosomes. Linkage mapping of a polymorphic 1R band derived from three rye cultivars demonstrated the presence of nonallelic, dominant markers in two independent crosses. Because of the high copy number of the R173 family (15 000 copies per diploid rye genome), its dispersion over the entire length of all chromosomes and the high number of markers obtained per primer pair, PCR markers based on the R173 family provide an almost unlimited source for well-spaced markers in rye mapping.Key words: polymerase chain reaction, mapping, repetitive DNA sequences, wheat, rye.


Sign in / Sign up

Export Citation Format

Share Document