Chromosome-mediated and direct gene transfers in wheat

Genome ◽  
1999 ◽  
Vol 42 (4) ◽  
pp. 570-583 ◽  
Author(s):  
Prem P Jauhar ◽  
Ravindra N Chibbar

Wild grasses, including relatives of wheat, have several desirable characters that can be introduced into both bread wheat and durum wheat. Since current wheat cultivars lack certain traits, for example, resistance to fusarium head blight (scab), related wild grasses may be the only option for useful variability. Wide hybridization of wheat with grasses, coupled with cytogenetic manipulation of the hybrid material, has been instrumental in the genetic improvement of wheat. Chromosome engineering methodologies, based on the manipulation of pairing control mechanisms and induced translocations, have been employed to transfer into wheat specific disease and pest resistance genes from annual (e.g., rye) or perennial (e.g., Thinopyrum spp., Lophopyrum spp., and Agropyron spp.) members of the wheat tribe, Triticeae. The advent of in situ hybridization techniques, for example, fluorescent GISH combined with Giemsa C-banding, has proved immensely useful in characterizing alien chromatin specifying resistance to various pathogens and pests. The use of DNA markers (RAPDs and RFLPs) helps to identify desirable genotypes more precisely and, thereby, facilitates gene transfer into wheat. Such markers may be particularly helpful in monitoring the introgression of alien genes in the wheat genome. In fact, several cultivars, particularly of bread wheat, contain superior traits of alien origin. The development of novel gene-transfer techniques in the past decade that allow direct delivery of DNA into regenerable embryogenic callus of wheat has opened up new avenues of alien-gene transfer into wheat cultivars. Thus, transgenic bread and durum wheats have been produced and methods of gene delivery standardized. The application of transgenic technology has not only yielded herbicide-resistant wheats, but has also helped to improve grain quality by modifying the protein and starch profiles of the grain. These in vitro approaches to gene transfer are developing rapidly, and promise to become an integral part of plant breeding efforts. However, the new biotechnological tools will complement, not replace, conventional plant breeding.Key words: alien-gene transfer, fluorescent GISH, Giemsa banding, homoeologous chromosome pairing, molecular markers, transgenic bread wheat, transgenic durum wheat.

2019 ◽  
Vol 139 (2) ◽  
pp. 251-262 ◽  
Author(s):  
David Sewordor Gaikpa ◽  
Bärbel Lieberherr ◽  
Hans Peter Maurer ◽  
C. Friedrich H. Longin ◽  
Thomas Miedaner

Author(s):  
Monika M. Lulsdorf ◽  
Alison Ferrie ◽  
Susan M. H. Slater ◽  
Hai Ying Yuan

2019 ◽  
Vol 42 (8) ◽  
pp. 813-822 ◽  
Author(s):  
S. S. Dhaliwal ◽  
Hari Ram ◽  
A. K. Shukla ◽  
G. S. Mavi

Crop Science ◽  
2011 ◽  
Vol 51 (6) ◽  
pp. 2517-2524 ◽  
Author(s):  
M. M. Fakhfakh ◽  
A. Yahyaoui ◽  
S. Rezgui ◽  
E. M. Elias ◽  
A. Daaloul

2007 ◽  
Vol 47 (12) ◽  
pp. 1422 ◽  
Author(s):  
U. K. Behera ◽  
A. N. Mishra ◽  
H. N. Pandey

Soybean [Glycine max (L.) Merr.]–wheat (Triticum aestivum L.) is the common cropping system in the Vertisols of central India. High temperatures prevailing during the reproductive phase and leaf rust infection of the late-planted wheat crop affect the grain yield adversely. In the soybean–potato–wheat cropping system, which has recently become more popular, wheat is sown very late, so high temperature stress is a major concern. Understanding of the response of very late-sown durum and bread wheat to high temperature stress during grain filling will assist breeders in genotype improvement and development of best agronomic management practices for promotion of very late-sown wheat cultivation in the region. Information is lacking on the response of durum and bread wheat to leaf rust and heat stress under very late-sown situations. Field experiments were conducted for three consecutive spring (January to April) seasons, from 1996 to 1998, with 20 cultivars of durum (Triticum turgidum L. var. durum Desf.) and bread (Triticum aestivum L. emend. Fiori. and Paol.) wheat of timely and late-sown groups. The study objective was to: (i) identify durum and bread wheat cultivars suitable for very late planting in the newly established soybean–potato–wheat multiple cropping system; (ii) evaluate differential performance of durum and bread wheat under very late-sown conditions; and (iii) characterise plant traits associated with tolerance to heat stress during the grain filling period. Each year, all the cultivars were planted very late in January in lieu of normal sowing in mid-November. Compared with both the timely and late-sown groups of bread wheat cultivars, durum wheat produced an average 6% higher grain yield when sown very late. The 1000-grain weight was the most affected yield attribute under high temperature. Thus, under very late sown conditions, stable and high 1000-grain weight (45–55 g), and high harvest index (41–52%) contributed to the higher yield of durum wheat. Durum cultivar HI 8498 and bread wheat cultivars GW 173, HI 1418 and DL 788-2 of early to medium maturity and with high yields (>4.0 t/ha) and water use efficiency (12.7–14.8 kg/ha.mm) proved promising. Durum cultivars remained free from leaf rust infection, while significant yield reduction was recorded in susceptible bread wheat cultivars, particularly DL 803-3 and GW 190. This was due to severe rust infection during 1997–98, when widespread incidence of leaf rust occurred in the region. Therefore, contrary to the popular belief, late planted durum wheat may be successfully grown in the soybean–potato–wheat cropping system in central India.


2019 ◽  
Vol 32 (5) ◽  
pp. 583-592 ◽  
Author(s):  
Giulia Mandalà ◽  
Silvio Tundo ◽  
Sara Francesconi ◽  
Federica Gevi ◽  
Lello Zolla ◽  
...  

Fusarium diseases, including Fusarium head blight (FHB) and Fusarium crown rot (FCR), reduce crop yield and grain quality and are major agricultural problems worldwide. These diseases also affect food safety through fungal production of hazardous mycotoxins. Among these, deoxynivalenol (DON) acts as a virulence factor during pathogenesis on wheat. The principal mechanism underlying plant tolerance to DON is glycosylation by specific uridine diphosphate–dependent glucosyltransferases (UGTs), through which DON-3-β-d-glucoside (D3G) is produced. In this work, we tested whether DON detoxification by UGT could confer to wheat a broad-spectrum resistance against Fusarium graminearum and F. culmorum. These widespread Fusarium species affect different plant organs and developmental stages in the course of FHB and FCR. To assess DON-detoxification potential, we produced transgenic durum wheat plants constitutively expressing the barley HvUGT13248 and bread wheat plants expressing the same transgene in flower tissues. When challenged with F. graminearum, FHB symptoms were reduced in both types of transgenic plants, particularly during early to mid-infection stages of the infection progress. The transgenic durum wheat displayed much greater DON-to-D3G conversion ability and a considerable decrease of total DON+D3G content in flour extracts. The transgenic bread wheat exhibited a UGT dose–dependent efficacy of DON detoxification. In addition, we showed, for the first time, that DON detoxification limits FCR caused by F. culmorum. FCR symptoms were reduced throughout the experiment by nearly 50% in seedlings of transgenic plants constitutively expressing HvUGT13248. Our results demonstrate that limiting the effect of the virulence factor DON via in planta glycosylation restrains FHB and FCR development. Therefore, ability for DON detoxification can be a trait of interest for wheat breeding targeting FHB and FCR resistance.


2005 ◽  
Vol 56 (12) ◽  
pp. 1355 ◽  
Author(s):  
Anna Mantzavinou ◽  
Penelope J. Bebeli ◽  
Pantouses J. Kaltsikes

Using the random amplified polymorphic DNA (RAPD) method, the genetic diversity of 19 Greek landraces and 9 cultivars of durum wheat [Triticum turgidum L. var. durum (Desf.)] was studied. Two commercial bread wheat (Triticum aestivum L.) cultivars and one genotype of Triticum monococcum L. were also included in the study. Eighty-seven arbitrary primers (10-mer) were evaluated in a preliminary experiment and 15 of them were selected for the main experiments based on the quality and reliability of their amplification and the polymorphism they revealed. A total of 150 DNA bands were obtained, 125 (83.3%) of which were polymorphic. On average, 10 DNA bands were amplified per primer, 8.3 of which were polymorphic. The genetic similarity between all pairs of genotypes was evaluated using the Jaccard’s or Nei and Li’s coefficients; the values of the former ranged from 0.153 to 0.973 while those of the latter were slightly higher (0.265–0.986). Cluster analysis was conducted by the UPGMA and the Njoin methods. Both methods broadly placed 26 durum genotypes into 1 branch while the other branch consisted of 2 subgroups: 1 included the 2 bread wheat cultivars; the other 1 consisted of 2 durum landraces, ‘Kontopouli’ and ‘Mavrotheri-Chios’, which showed an intruiging behaviour sharing bands with the bread wheat cultivars. The T. monococcum cultivar stood apart from all other genotypes.


1996 ◽  
Vol 36 (4) ◽  
pp. 451 ◽  
Author(s):  
CY Liu ◽  
AJ Rathjen

A large set of durum wheat lines (79 including 8 advanced Australian breeding lines) randomly collected from 11 countries and 11 bread wheat cultivars were grown in replicated trials at 2 field locations to compare yield and gluten quality. Gluten strength, as measured by the sodium dodecyl sulfate (SDS)-sedimentation (SDSS) test, varied considerably among the durum lines and was associated with the presence of specific glutenins. Unlike some previous reports, the present study showed that durum wheat cultivars having the high molecular weight (HMW) glutenin subunits coded by Glu-B1 genes such as 13 + 16 and 7 + 8 were highly correlated with improved dough strength, which was consistent with the effect of HMW glutenin subunits on dough quality in bread wheat. Cultivars having the low molecular weight (LMW) glutenin allele LMW-2 (or gliadin band r-45) generally gave stronger gluten than lines with allele LMW-1, as reported by earlier workers. The LMW pattern LMW-IIt gave the strongest glutenin. The combined better alleles at Glu-B1 (coded bands 13 + 16, 7 + 8 v. 6 + 8, 20) and Glu-3 (patterns LMW- II, LMW-IIt v. LMW-I) showed linear cumulative effects for dough strength. All the durum lines studied had lower SDSS values than the bread wheat controls (45.8 v. 76.2 mL), though durum wheats tended to possess higher grain protein concentrations (14.0 v. 11.9%) and gave lower grain yield than bread wheat. The Australian advanced lines had higher yield and better dough strength than durums from other countries except those from CIMMYT. The Australian lines also had 1-1.5% higher protein concentration and equal or better grain yield than the bread wheat, suggesting that these lines had potential for commercial use.


Sign in / Sign up

Export Citation Format

Share Document