Estimating genetic diversity in Greek durum wheat landraces with RAPD markers

2005 ◽  
Vol 56 (12) ◽  
pp. 1355 ◽  
Author(s):  
Anna Mantzavinou ◽  
Penelope J. Bebeli ◽  
Pantouses J. Kaltsikes

Using the random amplified polymorphic DNA (RAPD) method, the genetic diversity of 19 Greek landraces and 9 cultivars of durum wheat [Triticum turgidum L. var. durum (Desf.)] was studied. Two commercial bread wheat (Triticum aestivum L.) cultivars and one genotype of Triticum monococcum L. were also included in the study. Eighty-seven arbitrary primers (10-mer) were evaluated in a preliminary experiment and 15 of them were selected for the main experiments based on the quality and reliability of their amplification and the polymorphism they revealed. A total of 150 DNA bands were obtained, 125 (83.3%) of which were polymorphic. On average, 10 DNA bands were amplified per primer, 8.3 of which were polymorphic. The genetic similarity between all pairs of genotypes was evaluated using the Jaccard’s or Nei and Li’s coefficients; the values of the former ranged from 0.153 to 0.973 while those of the latter were slightly higher (0.265–0.986). Cluster analysis was conducted by the UPGMA and the Njoin methods. Both methods broadly placed 26 durum genotypes into 1 branch while the other branch consisted of 2 subgroups: 1 included the 2 bread wheat cultivars; the other 1 consisted of 2 durum landraces, ‘Kontopouli’ and ‘Mavrotheri-Chios’, which showed an intruiging behaviour sharing bands with the bread wheat cultivars. The T. monococcum cultivar stood apart from all other genotypes.

HortScience ◽  
2003 ◽  
Vol 38 (6) ◽  
pp. 1191-1197 ◽  
Author(s):  
S. Jorge ◽  
M.C. Pedroso ◽  
D.B. Neale ◽  
G. Brown

Random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic similarities between Portuguese Camelliasinensis (L.) O. Kuntze (tea plant) accessions and those obtained from the germplasm collections from the Tea Research Foundation of Kenya and from the National Research Institute of Vegetables, Ornamental Plants, and Tea of Japan. The accessions studied are taxonomically classified as C. sinensis, var. sinensis, var. assamica, or ssp. lasiocalyx. A set of 118 ten-base arbitrary primers was tested, of which 25 produced informative, reproducible, and polymorphic banding patterns. These primers were used to amplify DNA from 71 tea plant accessions and produced a total of 282 bands, of which 195 were polymorphic. The phenotypic frequencies were calculated using Shannon's Index and employed in estimating genetic diversity within tea plant populations. Our study demonstrates that tea plant populations, including the Portuguese tea plants, show considerable genetic variability. From the UPGMA cluster analysis based on a matrix using the Jaccard coefficient, it was possible to distinguish the Portuguese tea plants from the remaining accessions. The RAPD markers discriminated the three C. sinensis varieties. Moreover, within each variety cluster, subclusters formed according to geographic distribution. The RAPD analysis also separated the commercially cultivated tea plants from the Taiwanese wild tea plants. The present results show that RAPD analysis constitutes a good method to estimate genetic diversity within C. sinensis, and to differentiate C. sinensis accessions according to taxonomic variety and geographical distribution.


2004 ◽  
Vol 55 (3) ◽  
pp. 321 ◽  
Author(s):  
J. A. Kirkegaard ◽  
S. Simpfendorfer ◽  
J. Holland ◽  
R. Bambach ◽  
K. J. Moore ◽  
...  

The effect of previous crops (oilseed, legume, and cereal) on the incidence and severity of crown rot (Fusarium pseudograminearum, Fp) and yield of wheat was investigated in 3 field studies in northern New South Wales. The experiments were designed to compare the effectiveness of the Brassica break crops canola (Brassica napus L.) and mustard (B. juncea L.) with chickpea (Cicer arietinum L.) on reduction of Fp in subsequent wheat crops. Responses to previous broadleaf and cereal crops were investigated in Fp-tolerant bread wheat (Triticum aestivum L.) and Fp-susceptible durum wheat [Triticum turgidum L. ssp. durum (Dest.)]. In all experiments, broadleaf break crops increased the yield of Fp-susceptible durum wheat compared with durum after cereals (by 0.24–0.89 t/ha). The same response was observed for the Fp-tolerant wheat at 2 of the 3 sites (0.71 and 0.78 t/ha), with a lower yield (0.13 t/ha) after break crops than after cereals at one site during a drought. The yield of the Fp-susceptible durum wheat was generally higher after brassicas than after chickpea (yield advantage 0.27–0.58�t/ha), whereas there was no such difference in the tolerant wheat variety. In most cases, these yield responses to the previous crops were closely related to the severity of Fp infection. Overall yield of susceptible durum wheat was reduced by 1% for each 1% increase in Fp severity at harvest. Residual water and nitrogen (N) did not explain responses to previous crops, although common root rot (Bipolaris sorokiniana) may have contributed to some of the responses at the sites. There was little evidence that the lower disease and higher yield following brassicas compared with chickpea was related to suppression of Fp by biofumigation. More plausible explanations are that residual cereal residues decomposed more rapidly under dense Brassica canopies thus reducing Fp inoculum, that Fp severity was increased following chickpea due to higher soil N status, or that brassicas resulted in soil/residue biology that was less conducive to Fp inoculum survival. Evidence for the latter was provided by consistently higher levels of Trichoderma spp. isolated from wheat following brassicas compared with chickpea or cereals. Irrespective of the mechanisms involved, the results demonstrate that Brassica oilseeds provide an effective break crop for crown rot in northern NSW. Furthermore, brassicas may provide an excellent alternative rotation crop to chickpea for high value durum wheat due to an apparent capacity to more effectively reduce the severity of crown rot infection in subsequent crops.


2021 ◽  
Vol 923 (1) ◽  
pp. 012089
Author(s):  
Al-Burki Fouad Razzaq A. ◽  
Mohsin Haider Abdulhussein ◽  
Sarheed Abdullah F.

Abstract A field experiment was carried out in Samawa desert (70 km west of Samawa city, Al-Muthanna governorate), during the 2018-2019 and 2019-2020 agricultural seasons, to study the response of three Iraqi cultivars of wheat (Tamooz2, Ibaa99, Abu Ghraib3) to three planting dates (November 15, 1st December and December 15) under Samawa desert conditions. The results showed the superiority of Tamooz2 cultivar in all traits of the yield components, it gave the highest averages of grain yield, which amounted 5.75 and 5.89 tons/ha−1, weight of 1000 grains, which amounted 29.79 and 31.06 gm, and the number of grains per spike, which amounted 73.02 and 73.76 for the 2019 and 2019-2020 seasons, respectively. The date of December 15th also surpassed in the traits of grain yield, weight of 1000 grains, number of spike grains, and the highest grain yield reached 5.62 and 5.58 tons/ha−1 for the two seasons 2018-2019 and 2019-2020, respectively, and the combination (Tamooz 2 x December 15) gave superiority over the other combinations in terms of grain yield which amounted 6.05 tons ha−1 (2018-2019 season) and Ibaa99 × December 1 gave the highest grian yield about 6.10 tons ha-1 (2019-2020 season).


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 440
Author(s):  
Edossa Fikiru Wayima ◽  
Ayalew Ligaba-Osena ◽  
Kifle Dagne ◽  
Kassahun Tesfaye ◽  
Eunice Magoma Machuka ◽  
...  

Acid soils and associated Al3+ toxicity are prevalent in Ethiopia where normally Al3+-sensitive durum wheat (Triticum turgidum ssp durum Desf.) is an important crop. To identify a source of Al3+ tolerance, we screened diverse Ethiopian durum germplasm. As a center of diversity for durum wheat coupled with the strong selection pressure imposed by extensive acid soils, it was conceivable that Al3+ tolerance had evolved in Ethiopian germplasm. We used a rapid method on seedlings to rate Al3+ tolerance according to the length of seminal roots. From 595 accessions screened using the rapid method, we identified 21 tolerant, 180 intermediate, and 394 sensitive accessions. When assessed in the field the accessions had tolerance rankings consistent with the rapid screen. However, a molecular marker specific for the D-genome showed that all accessions rated as Al3+-tolerant or of intermediate tolerance were hexaploid wheat (Triticum aestivum L.) that had contaminated the durum grain stocks. The absence of Al3+ tolerance in durum has implications for how Al3+ tolerance evolved in bread wheat. There remains a need for a source of Al3+-tolerance genes for durum wheat and previous work that introgressed genes from bread wheat into durum wheat is discussed as a potential source for enhancing the Al3+ tolerance of durum germplasm.


Author(s):  
MS Alam ◽  
SN Begum ◽  
R Gupta ◽  
SN Islam

The molecular marker is a useful tool for assessing genetic variations and resolving cultivar identities. Information on genetic diversity and relationships among rice landraces from Bangladesh is currently very limited. Thirty-five rice genotypes including 33 landraces and 01 HYV of Bangladesh and 1 Indian landrace of particular interest to breeding programs were evaluated by means of random amplified polymorphic DNA (RAPD) technique. For molecular characterization, RAPD markers viz., OPC 03, OPC 04 and OPA 01 gave reproducible and distinct polymorphic amplified products. A total of 20 RAPD bands were scored of which 15 polymorphic amplification products were obtained by using these arbitrary primers. The size of amplified fragments were ranged from 550 to 1775 bp. Based on analysis performed on a similarity matrix using UPGMA, 35 genotypes were grouped into 2 main clusters. Landrace Sylhet balam and Mota aman was totally different from other genotypes. The information will facilitate selection of genotypes to serve as parents for effective rice breeding programs in Bangladesh. DOI: http://dx.doi.org/10.3329/ijarit.v4i1.21099 Int. J. Agril. Res. Innov. & Tech. 4 (1): 77-87, June, 2014


2009 ◽  
Vol 36 (12) ◽  
pp. 1110 ◽  
Author(s):  
Tracey Ann Cuin ◽  
Yu Tian ◽  
Stewart A. Betts ◽  
Rémi Chalmandrier ◽  
Sergey Shabala

Wheat breeding for salinity tolerance has traditionally focussed on Na+ exclusion from the shoot, but its association with salinity tolerance remains tenuous. Accordingly, the physiological significance of shoot Na+ exclusion and maintenance of an optimal K+ : Na+ ratio was re-evaluated by studying NaCl-induced responses in 50 genotypes of bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum) treated with 150 mM NaCl. Overall, Na+ exclusion from the shoot correlated with salinity tolerance in both species and this exclusion was more efficient in bread compared with durum wheat. Interestingly, shoot sap K+ increased significantly in nearly all durum and bread wheat genotypes. Conversely, the total shoot K+ content declined. We argue that this increase in shoot sap K+ is needed to provide efficient osmotic adjustment under saline conditions. Durum wheat was able to completely adjust shoot sap osmolality using K+, Na+ and Cl–; it had intrinsically higher levels of these solutes. In bread wheat, organic osmolytes must contribute ~13% of the total shoot osmolality. In contrast to barley (Hordeum vulgare L.), NaCl-induced K+ efflux from seedling roots did not predict salinity tolerance in wheat, implying that shoot, not root K+ retention is important in this species.


Sign in / Sign up

Export Citation Format

Share Document