Oxygen uptake and heart rate response of 6 standardized tennis drills

2012 ◽  
Vol 37 (5) ◽  
pp. 982-989 ◽  
Author(s):  
Nabyl Bekraoui ◽  
Marie-Agnès Fargeas-Gluck ◽  
Luc Léger

The purpose of this study was to compare the oxygen uptake of various on-court tennis drills. Eleven tennis players were monitored with a portable metabolic device to measure oxygen uptake of 6 different tennis drills at low and high speeds. The 6 drills were done with or without striking the ball, over half or full-width of the court, in attack or defense mode, using forehand or backhand strokes. Oxygen uptake values (mean ± SD) ranged from 33.8 ± 4.2 to 42.3 ± 5.1 mL·kg–1·min–1 when running at low speed on the full-width court in defense mode without striking the ball and when running at high speed on the full-width court in attack mode while striking the ball, respectively. Specific differences were observed. Attacking mode requires 6.5% more energy than defensive playing mode. Backhand strokes demand 7% more energy at low speed than forehand ones. Running and striking the ball costs 10% more energy than running without striking the ball. While striking the ball, shuttle running on half-width court costs 14% more energy than running on full-width courts. The specificity of the oxygen uptake responses obtained for these various tennis drills gives an improved representation of their energy cost and could be used to optimize training loads.

1998 ◽  
Vol 84 (1) ◽  
pp. 362-371 ◽  
Author(s):  
Roger G. Eston ◽  
Ann V. Rowlands ◽  
David K. Ingledew

Eston, Roger G., Ann V. Rowlands, and David K. Ingledew.Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J. Appl. Physiol. 84(1): 362–371, 1998.—Heart rate telemetry is frequently used to estimate daily activity in children and to validate other methods. This study compared the accuracy of heart rate monitoring, pedometry, triaxial accelerometry, and uniaxial accelerometry for estimating oxygen consumption during typical children’s activities. Thirty Welsh children (mean age 9.2 ± 0.8 yr) walked (4 and 6 km/h) and ran (8 and 10 km/h) on a treadmill, played catch, played hopscotch, and sat and crayoned. Heart rate, body accelerations in three axes, pedometry counts, and oxygen uptake were measured continuously during each 4-min activity. Oxygen uptake was expressed as a ratio of body mass raised to the power of 0.75 [scaled oxygen uptake (sV˙o 2)]. All measures correlated significantly ( P < 0.001) with sV˙o 2. A multiple-regression equation that included triaxial accelerometry counts and heart rate predicted sV˙o 2 better than any measure alone ( R 2 = 0.85, standard error of the estimate = 9.7 ml ⋅ kg−0.75 ⋅ min−1). The best of the single measures was triaxial accelerometry ( R 2 = 0.83, standard error of the estimate = 10.3 ml ⋅ kg−0.75 ⋅ min−1). It is concluded that a triaxial accelerometer provides the best assessment of activity. Pedometry offers potential for large population studies.


2017 ◽  
Vol 55 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Vuong Ngo ◽  
Hugh Richards ◽  
Miran Kondric

AbstractDisplays of anxiety in table tennis were assessed through subjective (a self-report questionnaire), physiological (heart-rate variability) and kinematic variables. Using a within-group crossover design, 9 university-level table tennis players completed a series of serves under low- and high-anxiety conditions. Anxiety manipulation was achieved through the introduction of a national standard table tennis player, known to the participants, to receive serves in the high-anxiety condition, whilst serves were received by no opponent in the low-anxiety condition. Automated motion capture systems consisting of high-speed 3D motion cameras and analytical software (QUALISYS) determined the subject’s movement kinematics: bat face angle (degrees) and serve routine duration (s). Self-reported state anxiety (MRF-Likert) and heart rate measurements were collected to examine changes between conditions. Contrary to the hypothesis, bat face angles did not change significantly between anxiety conditions (F (1.8) = 2.791, p = 0.133) and movement times were faster in the high-anxiety condition. In light of these findings, research into other facets of movement behaviour must be analysed to gain further understanding of the effects of anxiety on performance, which remain unclear.


Ergonomics ◽  
1984 ◽  
Vol 27 (8) ◽  
pp. 895-902 ◽  
Author(s):  
BRUCE H. JONES ◽  
MICHAEL M. TONER ◽  
WILLIAM L. DANIELS ◽  
JOSEPH J. KNAPIK

2020 ◽  
Vol 52 (7S) ◽  
pp. 47-48
Author(s):  
Jeremy Ducharme ◽  
Ann Gibson ◽  
Jonathan Houck ◽  
Lydia Hallam ◽  
Zachary Mckenna ◽  
...  

Author(s):  
Jean-Christophe Fauroux ◽  
Frédéric Chapelle ◽  
Belhassen-Chedli Bouzgarrou ◽  
Philippe Vaslin ◽  
Mohamed Krid ◽  
...  

This chapter presents recent mechatronics developments to create original terrestrial mobile robots capable of crossing obstacles and maintaining their stability on irregular grounds. Obstacle crossing is both considered at low and high speeds. The developed robots use wheeled propulsion, efficient on smooth grounds, and improve performance on irregular grounds with additional mobilities, bringing them closer to legged locomotion (hybrid locomotion). Two sections are dedicated to low speed obstacle crossing. Section two presents an original mobile robot combining four actuated wheels with an articulated frame to improve obstacle climbing. Section three extends this work to a new concept of modular poly-robot for agile transport of long payloads. The last two sections deal with high-speed motion. Section four describes new suspensions with four mobilities that maintain pitch stability of vehicles crossing obstacles at high speed. After the shock, section five demonstrates stable pitch control during ballistic phase by accelerating-braking the wheels in flight.


1999 ◽  
Vol 86 (3) ◽  
pp. 806-811 ◽  
Author(s):  
M. Kjær ◽  
F. Pott ◽  
T. Mohr ◽  
P. Linkis ◽  
P. Tornøe ◽  
...  

Feed-forward and feedback mechanisms are both important for control of the heart rate response to muscular exercise, but their origin and relative importance remain inadequately understood. To evaluate whether humoral mechanisms are of importance, the heart rate response to electrically induced cycling was studied in participants with spinal cord injury (SCI) and compared with that elicited during volitional cycling in able-bodied persons (C). During voluntary exercise at an oxygen uptake of ∼1 l/min, heart rate increased from 66 ± 4 to 86 ± 4 (SE) beats/min in seven C, and during electrically induced exercise at a similar oxygen uptake in SCI it increased from 73 ± 3 to 110 ± 8 beats/min. In contrast, blood pressure increased only in C (from 88 ± 3 to 99 ± 4 mmHg), confirming that, during exercise, blood pressure control is dominated by peripheral neural feedback mechanisms. With vascular occlusion of the legs, the exercise-induced increase in heart rate was reduced or even eliminated in the electrically stimulated SCI. For C, heart rate tended to be lower than during exercise with free circulation to the legs. Release of the cuff elevated heart rate only in SCI. These data suggest that humoral feedback is of importance for the heart rate response to exercise and especially so when influence from the central nervous system and peripheral neural feedback from the working muscles are impaired or eliminated during electrically induced exercise in individuals with SCI.


1961 ◽  
Vol 16 (6) ◽  
pp. 997-1000 ◽  
Author(s):  
Ernest D. Michael ◽  
Kenneth E. Hutton ◽  
Steven M. Horvath

Three healthy male subjects 20 years of age were exercised for 2—8 hr riding a bicycle ergometer or walking on a treadmill. Higher heart rates were found with the bicycle rides than with the walking exercises with equivalent oxygen uptakes. The subjects could not work on the bicycle ergometer at oxygen uptakes of 1.8 liters/min for more than 4 hr but could with this uptake walk 8 hr. The results indicated that an 8-hr period of exercise could be completed without undue fatigue whenever the energy cost did not exceed 35% of the maximum oxygen uptake where heart rates, oxygen uptakes, and rectal temperatures remained below 120 beats/min, 1.4 liters/min, and 38 C, respectively. The heart rate appeared to be the important factor for estimating 8-hr work endurance. A rate of 140 beats/min could not be maintained for more than 4 hr or a rate of 160 beats/min for more than 2 hr without extreme fatigue. Submitted on October 26, 1960


Sign in / Sign up

Export Citation Format

Share Document