Potential flow solution for a free surface flow past a sudden slope change

2004 ◽  
Vol 31 (4) ◽  
pp. 553-560 ◽  
Author(s):  
A R Zarrati ◽  
Yee-Chung Jin ◽  
A Shanehsaz-zadeh ◽  
F Ahadi

An analytical model was developed to calculate the pressure distribution in a free surface flow past a sudden change in channel slope. A conformal transformation technique was used to solve the problem analytically in a way that there is no need for trial and error to find the location of the free surface. Two methods were employed for this simulation: flow at a corner and free streamline theory. It was shown that free streamline theory is more accurate. Experiments were conducted to verify the ability of the analytical model to calculate the pressure distribution in a channel with a sudden change in slope. Slope changes of 6.22°, 10°, and 15° were tested with various flow discharges. The analytical model predictions of pressure distribution along the channel bed and with depth agreed well with the experimental measurements. Pressures up to 25 times the hydrostatic pressure were experimentally measured near the point of sudden change in slope. These pressures were reproduced by the model. The analytical model predictions of the water surface profile over a ramp in a prototype spillway were compared with those of a numerical model. The comparison showed a good agreement.Key words: pressure distribution, free surface flow, analytical model, chute spillway, aerator ramp, potential flow.

2011 ◽  
Vol 23 (7) ◽  
pp. 072101 ◽  
Author(s):  
Osama Ogilat ◽  
Scott W. McCue ◽  
Ian W. Turner ◽  
John A. Belward ◽  
Benjamin J. Binder

2007 ◽  
Vol 51 (01) ◽  
pp. 47-64
Author(s):  
James C. Huan ◽  
Thomas T. Huang

A fast turnaround and an accurate computational fluid dynamics (CFD) approach for ship total resistance prediction is developed. The approach consists of a nonlinear free surface potential flow solver (PShip code) with a wet-or-dry transom stern model, and a Reynolds-averaged Navier-Stokes (RANS) equation solver that solves viscous free surface flow with a prescribed free surface given from the PShip. The prescribed free surface RANS predicts a viscous correction to the pressure resistance (viscous form) and viscous flow field around the hull. The viscous free surface flow solved this way avoids the time-consuming RANS iterations to resolve the free surface profile. The method, however, requires employing a flow characteristic-based nonreflecting boundary condition at the free surface. The approach can predict the components of ship resistance, the associated wave profile around the hull, and the sinkage and trim of the ship. Validation of the approach is presented with Wigley, Series 60 (CB = 0.6), and NSWCCD Model 5415 hulls. An overall accuracy of ±2% for ship total resistance prediction is achieved. The approach is applied to evaluating the effects of a stern flap on a DD 968 model on ship performance. An empirical viscous form resistance formula is also devised for a quick ship total resistance estimate.


1982 ◽  
Vol 120 ◽  
pp. 139-154 ◽  
Author(s):  
G. Dagan ◽  
T. Miloh

This paper analyses the problem of a flow past an oscillating body moving with constant velocity, below and parallel to a free surface. Special attention is given to frequencies of oscillation in the neighbourhood of the critical frequency ωc= 0.25 g/U, where the classical linearized solution yields infinitely large wave amplitude. As a result both the lift and drag forces acting on the oscillating body at the resonant frequency are singular. It is demonstrated in the paper how this resonance is elimi- nated by considering higher-order free-surface effects, in particular the interaction between the first- and third-order terms. The resulting generalized solution yields finite wave amplitudes at the resonant frequency which are O(ε½) and O(εlogε) for 2 and 3 dimensions respectively. Here 6 is a measure of the singularity strength. It is also shown that inclusion of third-order terms causes a shift in the wavenumber and group velocity which eliminates the singularity in the lift and drag expressions at the resonant frequency. These results are illustrated by computing the lift and drag experienced by a submerged oscillating horizontal doublet in a uniform flow.


2012 ◽  
Vol 23 (4) ◽  
pp. 441-467 ◽  
Author(s):  
CHRISTOPHER J. LUSTRI ◽  
SCOTT W. MCCUE ◽  
BENJAMIN J. BINDER

The problem of steady subcritical free surface flow past a submerged inclined step is considered. The asymptotic limit of small Froude number is treated, with particular emphasis on the effect that changing the angle of the step face has on the surface waves. As demonstrated by Chapman & Vanden-Broeck, (2006) Exponential asymptotics and gravity waves. J. Fluid Mech.567, 299–326, the divergence of a power series expansion in powers of the square of the Froude number is caused by singularities in the analytic continuation of the free surface; for an inclined step, these singularities may correspond to either the corners or stagnation points of the step, or both, depending on the angle of inclination. Stokes lines emanate from these singularities, and exponentially small waves are switched on at the point the Stokes lines intersect with the free surface. Our results suggest that for a certain range of step angles, two wavetrains are switched on, but the exponentially subdominant one is switched on first, leading to an intermediate wavetrain not previously noted. We extend these ideas to the problem of flow over a submerged bump or trench, again with inclined sides. This time there may be two, three or four active Stokes lines, depending on the inclination angles. We demonstrate how to construct a base topography such that wave contributions from separate Stokes lines are of equal magnitude but opposite phase, thus cancelling out. Our asymptotic results are complemented by numerical solutions to the fully nonlinear equations.


2021 ◽  
Vol 28 (2) ◽  
pp. 137-151
Author(s):  
Rizgar Karim ◽  
Jowhar Mohammad

This study was conducted to compare water surface profiles with standard ogeecrested spillways. Different methods were used, such as (experimental models, numerical models, and design nomographs for the United States Army Corps of Engineers, USACE). In accordance with the USACE specifications, three different models were constructed from rigid foam and then installed in a testing flume. The water surface profile has been recorded for these models with different design heads. For modeling the experimental model configurations, a numerical model based on the smoothed particle hydrodynamics (SPH) technique was used and is developed to simulate the water surface profile of the flow over the ogee-crested spillway. A 2D SPHysics open-source software has been used in this study, using the SPH formulation to model fluid flow, developing the SPH boundary procedure to handle open-boundary simulations, and modifying the open-source SPHysics code for this purpose. The maximum absolute difference between the measured and computed results of the water surface profile for all head ratios of (H/Hd), does not exceed 4.63% at the crest region, the numerical results for the water surface profile showed good agreement with the physical model results. The results obtained experimentally and numerically by SPH are compared with the CFD results in order to be more reassuring from the results. Additional comparisons were made using interpolated data from USACE, Waterways Experiment Station (WES), and design nomographs. The SPH technique is considered very promising and effective for free surface flow applications.


1983 ◽  
Vol 27 (01) ◽  
pp. 1-12
Author(s):  
F. Noblesse ◽  
G. Triantafyllou

Several explicit approximations for calculating nonlifting potential flow about a body in an unbounded fluid are studied. These approximations are shown to be exact in the particular cases of flows due to translations of ellipsoids, and they are compared with the exact potential for two-dimensional flows about ogives in translatory motions. Two approximations, given by formulas (31) and (32) in the conclusion, appear to be of particular interest for practical applications, and they can be extended to free-surface flow problems, for example, ship wave resistance, and radiation and diffraction of regular waves by a body.


1995 ◽  
Vol 39 (01) ◽  
pp. 42-52
Author(s):  
Dane Hendrix ◽  
Francis Noblesse

Steady free-surface potential flow about a mathematically defined hull form is considered. The flow is defined using the slender-ship approximation. The hull form is approximated by means of flat triangular panels within which the source strength is piecewise constant. Convergence of the computed velocity potential, wave profile, and lift, moment and drag with respect to hull discretization (size and aspect ratio of panels) is evaluated.


Sign in / Sign up

Export Citation Format

Share Document