Three-dimensional analysis of soil – steel bridges

1995 ◽  
Vol 22 (6) ◽  
pp. 1155-1163 ◽  
Author(s):  
Youssef Girges ◽  
George Abdel-Sayed

The present design of soil–steel bridges is based on plane-strain analysis by considering a slice of a unit width of the conduit wall and the surrounding soil. This two-dimensional analysis neglects the third-dimensional effect of the steel shell and the soil continuum which could be significant especially when the load varies in the longitudinal direction, as in the case of live load acting over a shallow cover. The structure is also subjected to a varying dead load due to the variation in the depth of cover from maximum at the middle part of the conduit to zero at the conduit edges. A three-dimensional finite element analysis is presented in this paper to examine the actual three-dimensional behaviour of soil-steel bridges. The thrust and bending moment around the conduit walls as well as the stability of a single conduit are presented and compared with the results obtained from plane-strain analysis. Also, the live load dispersion in the soil above the conduit is examined and compared with some present codes. The study leads to evaluation of the degree of approximation inherited with the practical approaches of the two-dimensional analysis. Key words: conduit, corrugated steel, three-dimensional analysis, stability, soil–steel bridges.

1992 ◽  
Vol 29 (1) ◽  
pp. 39-52 ◽  
Author(s):  
R. K. Rowe ◽  
K. M. Lee

A number of simplified approaches have been used by various researchers to estimate the three-dimensional stress changes and ground deformations due to shallow tunnels in soft soils. The effectiveness of these simplified analyses, such as (i) axisymmetric analysis, (ii) longitudinal plane strain analysis, and (iii) empirical cumulative probability distribution approach, has been examined by comparison of results with those from a full three-dimensional elastoplastic finite-element analysis. For tunnels located at shallow depths, axisymmetric analyses are generally found to be unable to predict the correct magnitude of displacement around a tunnel heading. However, the trend of the three-dimensional deformation behaviour near the tunnel heading can be reasonably approximated by the average of the normalized displacement curves predicted by the two axisymmetric assumptions as described in this paper. The three-dimensional distribution of the displacement near the ground surface, on the other hand, can be approximately predicted by the cumulative probability approach, provided that the three empirical parameters required by the equations are reasonably estimated. In this paper, these parameters were estimated from the result of a two-dimensional plane strain cross-sectional analysis. Finally, it was found that modelling of three-dimensional deformations by a longitudinal plane strain analysis did not give good results for the cases examined. Key words : tunnelling, soft ground, analysis.


2012 ◽  
Vol 49 (10) ◽  
pp. 1134-1146 ◽  
Author(s):  
Pio-Go Hsieh ◽  
Chang-Yu Ou ◽  
Chiang Shih

Previous studies have shown that installation of cross walls in deep excavations can reduce lateral wall deflection to a very small amount. To predict the lateral wall deflection for excavations with cross walls, it is necessary to perform a three-dimensional numerical analysis because the deflection behavior of the diaphragm wall with cross walls is by nature three dimensional. However for the analysis and design of excavations, two-dimensional plane strain analysis is mostly used in practice . For this reason, based on the deflection behavior of continuous beams and the superimposition principle, an equivalent beam model suitable for two-dimensional plane strain analysis was derived to predict lateral wall deflection for excavations with cross walls. Three excavation cases were employed to verify the proposed model. Case studies confirm the proposed equivalent beam model for excavations with cross walls installed from near the ground surface down to at least more than half the embedded depth of the diaphragm wall. For the case with a limited cross-wall depth, the proposed model yields a conservative predicted lateral wall deflection.


2003 ◽  
Vol 125 (2) ◽  
pp. 372-379 ◽  
Author(s):  
J. R. Beisheim ◽  
G. B. Sinclair

The stress analysis of dovetail attachments presents some challenges. These stem from the high stress gradients at the edges of contact. They also stem from the nonlinearities accompanying conforming contact. Even with two-dimensional analysis, obtaining converged peak stresses is not trivial. With three-dimensional analysis, convergence can be expected to be more difficult to achieve because of the added computational costs of refinement in three dimensions. To meet these challenges, this paper describes a submodeling procedure with finite elements. The submodeling approach features bicubic surface fits to displacements for submodel boundary conditions. The approach also features a means of verifying these boundary conditions have converged; this is crucial to obtaining accurate converged peak stresses. The approach is applied to a three-dimensional test piece used to simulate a dovetail attachment. This application leads to converged three-dimensional stresses. These stresses serve to quantify the sort of increases in contact stresses in attachments due to three-dimensional effects.


2017 ◽  
Vol 52 (5) ◽  
pp. 277-287
Author(s):  
Kristine Klungerbo ◽  
Gunnar Härkegård

The peak stress and stress gradient (parameters required for fatigue strength assessment) at an elliptical through-hole in a wide plate under uniaxial tension have been studied by means of three-dimensional finite element analysis with high mesh density. Dimensionless variables have been used throughout the investigation. The accuracy of two-dimensional finite element analysis has been assessed by extrapolating peak stress at an elliptical hole to infinite plate width and mesh density and comparing the extrapolated value with the closed-form Kolosov–Inglis solution (deviation < 0.2%). First- and second-order elements with full and reduced integration have been employed. Methods for determining stress gradients, using a varying number of nodal stresses, have been investigated. The accuracy of three-dimensional finite element analysis has been assessed by comparing the plane-strain peak stress for an elliptical through-hole with the corresponding plane-strain value from two-dimensional analysis (deviation < 0.1%). Peak stresses at the apex of the elliptical through-hole have also been determined for this three-dimensional mesh assuming a free plate surface. In particular, beside the maximum peak stress and its location, peak stresses have been determined at the surface and at the mid-plane of the plate for thicknesses ranging from 0.2 to 10 times the axis of the elliptical hole. The stress gradients at these locations have been determined, too. The minimum stress gradient is observed at the location of maximum stress. For sufficiently thin and thick plates, the mid-plane stresses approach two-dimensional plane-stress and generalised plane-strain solutions, respectively.


Author(s):  
J. R. Beisheim ◽  
G. B. Sinclair

The stress analysis of dovetail attachments presents some challenges. These stem from the high stress gradients at the edges of contact. They also stem from the nonlinearities accompanying conforming contact. Even with two-dimensional analysis, obtaining converged peak stresses is not trivial. With three-dimensional analysis, convergence can be expected to be more difficult to achieve because of the added computational costs of refinement in three dimensions. To meet these challenges, this paper describes a submodeling procedure with finite elements. The submodeling approach features bicubic surface fits to displacements for submodel boundary conditions. The approach also features a means of verifying these boundary conditions have converged: This is crucial to obtaining accurate converged peak stresses. The approach is applied to a three-dimensional test piece used to simulate a dovetail attachment. This application leads to converged three-dimensional stresses. These stresses serve to quantify the sort of increases in contact stresses in attachments due to three-dimensional effects.


1983 ◽  
Vol 105 (3) ◽  
pp. 406-412 ◽  
Author(s):  
Kyung Woong Kim ◽  
Masato Tanaka ◽  
Yukio Hori

The thermohydrodynamic performance of the bearing is analyzed, taking into account the three-dimensional variation of lubricant viscosity and density. The effect of pivot position and operating and environmental conditions on the performance is studied. The present analysis is compared with the isoviscous or the two-dimensional analysis, and is found to predict the bearing performance more accurately.


Author(s):  
A. R. Wadia ◽  
P. N. Szucs ◽  
K. L. Gundy-Burlet

Large circumferential varying pressure levels produced by aerodynamic flow interactions between downstream stators and struts present a potential noise and stability margin liability in a compression component. These interactions are presently controlled by tailoring the camber and/or stagger angles of vanes neighboring the fan frame struts. This paper reports on the design and testing of a unique set of swept and leaned fan outlet guide vanes (OGVs) that do not require this local tailoring even though the OGVs are closely coupled with the fan frame struts and splitter to reduce engine length. The swept and leaned OGVs not only reduce core-duct diffusion, but they also reduce the potential flow interaction between the stator and the strut relative to that produced by conventional radial OGVs. First, the design of the outlet guide vanes using a single bladerow three-dimensional viscous flow analysis is outlined. Next, a two-dimensional potential flow analysis was used for the coupled OGV-frame system to obtain a circumferentially non-uniform stator stagger angle distribution to further reduce the upstream static pressure disturbance. Recognizing the limitations of the two-dimensional potential flow analysis for this highly three-dimensional set of leaned OGVs, as a final evaluation of the OGV-strut system design, a full three-dimensional viscous analysis of a periodic circumferential sector of the OGVs, including the fan frame struts and splitter, was performed. The computer model was derived from a NASA-developed code used in simulating the flow field for external aerodynamic applications with complex geometries. The three-dimensional coupled OGV-frame analysis included the uniformly-staggered OGVs configuration and the variably-staggered OGVs configuration determined by the two-dimensional potential flow analysis. Contrary to the two-dimensional calculations, the three-dimensional analysis revealed significant flow problems with the variably-staggered OGVs configuration and showed less upstream flow non-uniformity with the uniformly-staggered OGVs configuration. The flow redistribution in both the radial and tangential directions, captured fully only in the three-dimensional analysis, was identified as the prime contributor to the lower flow non-uniformity with the uniformly-staggered OGVs configuration. The coupled three-dimensional analysis was also used to validate the design at off-design conditions. Engine test performance and stability measurements with both uniformly- and variably-staggered OGVs configurations with and without the presence of inlet distortion confirmed the conclusions from the three-dimensional analysis.


1999 ◽  
Vol 36 (02) ◽  
pp. 102-112
Author(s):  
Michael D. A. Mackney ◽  
Carl T. F. Ross

Computational studies of hull-superstructure interaction were carried out using one-, two-and three-dimensional finite element analyses. Simplification of the original three-dimensional cases to one- and two-dimensional ones was undertaken to reduce the data preparation and computer solution times in an extensive parametric study. Both the one- and two-dimensional models were evaluated from numerical and experimental studies of the three-dimensional arrangements of hull and superstructure. One-dimensional analysis used a simple beam finite element with appropriately changed sections properties at stations where superstructures existed. Two-dimensional analysis used a four node, first order quadrilateral, isoparametric plane elasticity finite element, with a corresponding increase in the grid domain where the superstructure existed. Changes in the thickness property reflected deck stiffness. This model was essentially a multi-flanged beam with the shear webs representing the hull and superstructure sides, and the flanges representing the decks One-dimensional models consistently and uniformly underestimated the three-dimensional behaviour, but were fast to create and run. Two-dimensional models were also consistent in their assessment, and considerably closer in predicting the actual behaviours. These models took longer to create than the one-dimensional, but ran in very much less time than the refined three-dimensional finite element models Parametric insights were accomplished quickly and effectively with the simplest model and processor, but two-dimensional analyses achieved closer absolute measure of the displacement behaviours. Although only static analysis with simple loading and support conditions were presented, it is believed that similar benefits would be found for other loadings and support conditions. Other engineering components and structures may benefit from similarly judged simplification using one- and two-dimensional models to reduce the time and cost of preliminary design.


Sign in / Sign up

Export Citation Format

Share Document