Effect of O2 on vesicle formation, acetylene reduction, and O2-uptake kinetics in Frankia sp. HFPCcI3 isolated from Casuarina cunninghamiana

1985 ◽  
Vol 31 (9) ◽  
pp. 804-809 ◽  
Author(s):  
Marcia A. Murry ◽  
Zhang Zhongze ◽  
John G. Torrey

The effect of the partial pressure of oxygen (PO2) on the formation of vesicles, which are thought to be the site of N2 fixation in Frankia, was studied in HFPCcI3, an effective isolate from Casuarina cunninghamiana. Unlike other actinorhizal root nodules, vesicles are not produced by the endophyte in Casuarina nodules. However, in culture under aerobic conditions, large, phase-bright vesicles are formed in HFPCcI3 within 20 h following removal of [Formula: see text] from the culture medium and reach peak numbers within 72 to 96 h. In vivo acetylene reduction activity parallels vesicle formation. Optimum rates of acetylene reduction in short-term assays occurred at 20% O2 (0.2 atm (1 atm = 101.325 kPa)) in the gas phase. O2 uptake (respiration) determined polarographically showed diffusion-limited kinetics and remained unsaturated by O2 until 300 μM O2. In contrast, respiration in [Formula: see text]-grown cells was saturated by O2 between 8 and 10 μM O2. These results indicate the presence of a diffusion barrier associated with the vesicles. Vesicle development was repressed in cells incubated in N-free media sparged with gas mixtures with PO2 between 0.001 and 0.003 atm. Nitrogenase was induced under these conditions, but acetylene reduction was extremely O2 sensitive. The kinetics of O2 uptake as a function of dissolved O2 concentration in avesicular cells were similar to those in [Formula: see text]-grown cells indicating the lack of a diffusion barrier. These results demonstrate that vesicle formation and the development of the O2 protection mechanisms of nitrogenase are regulated by ambient PO2 in HFPCcI3.


Nature ◽  
1980 ◽  
Vol 287 (5783) ◽  
pp. 633-635 ◽  
Author(s):  
John D. Tjepkema ◽  
William Ormerod ◽  
John G. Torrey


1992 ◽  
Vol 38 (6) ◽  
pp. 577-583 ◽  
Author(s):  
J. K. Ladha ◽  
Minviluz Garcia ◽  
R. P. Pareek ◽  
G. Rarivoson

Six experiments, two each in the phytotron, greenhouse, and field, were conducted to assess the contribution of nitrogenase activity (acetylene reduction) by stem nodules in the presence and absence of root nodules of Sesbania rostrata (Brem & Oberm). In a greenhouse experiment, the effect of detaching already formed aerial stem nodules on the restoration of root nodules and nitrogenase activity was studied. The field experiment compared nodulation and acetylene-reduction activity by dual-nodulating S. rostrata and root-nodulating Sesbania cannabina. Acetylene-reduction activity expressed per gram of nodule dry weight was higher for stem nodules than for root nodules. Root nodule dry weight and acetylene-reduction activity failed to increase after stem inoculation, but root nodule dry weight and acetylene-reduction activity increased several fold within 15 days of detachment of aerial stem nodules. Stem nodulation, which occurred without inoculation under lowland field condition, suppressed root nodulation, thus accounting for more than 75% of total nitrogenase activity. Sesbania rostrata showed higher acetylene-reduction activity than S. cannabina. In dual-nodulating plants, root and stem nodules appeared to strike a balance in competition for energy, which may be controlled by stem nodulation. Key words: Sesbania rostrata, Azorhizobium caulinodans, stem nodule, root nodule, acetylene-reducing activity.



Author(s):  
C. J. Emerson ◽  
A. K. Bal

Nitrogen-fixing peanut root nodules have highly specialized, large spherical bacteroids and show higher acetylene-reduction activity than the nodules of other legumes induced by the same strain of rhizobia. Differences are also found in their anatomical organization and with regard to bacteroid-associated organelles and other structures (dense bodies) found on the host-symbiont interface. In this investigation, further description of these organelles and structures was made at different stages of development in a correlated SEM/TEM study.Arachis hypogaea L. cv. Jumbo Virginia plants were grown in environmental growth chambers and inoculated with Rhizobium sp. 32Hl. For TEM, slices of nodules were fixed in Karnovsky's fixative in Sorensen's phosphate buffer, pH 7.2 for 1 h at 4°C. Tissues were rinsed in buffer, post-fixed with 1% phosphate-buffered osmium tetroxide for 1 h at 4°C and dehydrated in ethanol. 1% p-phenylenediamine was added at the 70% ethanol step (30 min) to preserve lipids.



1980 ◽  
Vol 7 (3) ◽  
pp. 261 ◽  
Author(s):  
WD Sutton

Rifampicin and D-threo-chloramphenicol inhibited the incorporation of [35S]methionine into purified bacteroid suspensions, and into the bacteroid fraction but not the plant cytoplasmic fraction of cultured nodules. Cycloheximide and anisomycin inhibited [35S]methionine incorporation into the plant cytoplasmic fraction of cultured nodules; at early times they inhibited incorporation into the bacteroid fraction, but at later times this effect was reversed. Chloramphenicol, rifampicin, spectinomycin, cycloheximide and anisomycin all prevented the induction of acetylene reduction activity in immature nodules; spectinomycin did not prevent induction in nodules containing a spectinomycin-resistant Rhizobium. Neither rifampicin nor chloramphenicol inhibited the acetylene reduction activity of mature nodules, but cycloheximide and anisomycin caused rapid loss of activity. Cycloheximide did not inhibit the acetylene reduction activity of Rhizobium strain 32H1 in pure cultures. The results suggest that both plant cytoplasmic protein synthesis and bacteroid protein synthesis are needed for the induction of nitrogenase activity in developing lupin nodules, and that plant cytoplasmic protein synthesis but not bacteroid protein synthesis is needed for the maintenance of nitrogenase activity at high levels.







1979 ◽  
Vol 25 (10) ◽  
pp. 1197-1200 ◽  
Author(s):  
R. C. Shearman ◽  
W. L. Pedersen ◽  
R. V. Klucas ◽  
E. J. Kinbacher

Associative nitrogen fixation in Kentucky bluegrass (Poa pratensis L.) turfs inoculated with five nitrogen-fixing bacterial isolates was evaluated using the acetylene reduction assay and nitrogen accumulation as indicators of fixation. 'Park' and 'Nugget' Kentucky bluegrass turfs were grown in controlled environment chambers and inoculated with Klebsiella pneumoniae (W-2, W-6, and W-14), Erwinia herbicola (W-8), and Enterobacter cloacae (W-11). 'Park' inoculated with K. pneumoniae (W-6) had significant acetylene reduction activity using undisturbed turfs. Other treatments including turfs treated with heat-killed cells had no significant difference in acetylene reduction. In a second study, 'Park' and 'South Dakota Certified' turfs were grown in a greenhouse and inoculated with K. pneumoniae (W-6) and E. herbicola (W-8). 'Park' inoculated with K. pneumoniae (W-6) had increased acetylene reduction activity rates and also a greater nitrogen accumulation in aerial tissues when compared to controls. Acetylene reduction activity was correlated (r = 0.92) to nitrogen accumulation. Other treatments did not effectively increase acetylene reduction activity or nitrogen accumulation.



1981 ◽  
Vol 13 (6) ◽  
pp. 555-557 ◽  
Author(s):  
Forrest E. Dierberg ◽  
Patrick L. Brezonik


1980 ◽  
Vol 26 (9) ◽  
pp. 1072-1089 ◽  
Author(s):  
Dwight Baker ◽  
William Newcomb ◽  
John G. Torrey

The actinomycete, Frankia sp. EuI1, isolated from root nodules of Elaeagnus umbellata is an infective endophyte but which lacks the ability to form an effective nitrogen-fixing symbiosis with its host. This ineffective organism can be distinguished easily from other frankiae, in vitro, on the basis of size, morphology, and the elaboration of a diffusible pigment. Cross-inoculation studies indicated that the host range of this symbiont is narrow and probably restricted to the Elaeagnaceae. In all cases of nodulation the symbiosis never developed nitrogenase activity and the microsymbiont never produced endophytic vesicles within the infected host cells. Sporangia were produced in vivo and in vitro so the morphogenetic block is apparently restricted to vesicle formation.



Sign in / Sign up

Export Citation Format

Share Document