Characterization of an ineffective actinorhizal microsymbiont, Frankia sp. EuI1 (Actinomycetales)

1980 ◽  
Vol 26 (9) ◽  
pp. 1072-1089 ◽  
Author(s):  
Dwight Baker ◽  
William Newcomb ◽  
John G. Torrey

The actinomycete, Frankia sp. EuI1, isolated from root nodules of Elaeagnus umbellata is an infective endophyte but which lacks the ability to form an effective nitrogen-fixing symbiosis with its host. This ineffective organism can be distinguished easily from other frankiae, in vitro, on the basis of size, morphology, and the elaboration of a diffusible pigment. Cross-inoculation studies indicated that the host range of this symbiont is narrow and probably restricted to the Elaeagnaceae. In all cases of nodulation the symbiosis never developed nitrogenase activity and the microsymbiont never produced endophytic vesicles within the infected host cells. Sporangia were produced in vivo and in vitro so the morphogenetic block is apparently restricted to vesicle formation.

1980 ◽  
Vol 26 (9) ◽  
pp. 1066-1071 ◽  
Author(s):  
Dwight Baker ◽  
John G. Torrey

The actinomycete, Frankia sp. AvcI1, isolated from root nodules of Alnus viridis ssp. crispa was grown in axenic culture and used to inoculate host seedlings. This bacterium has been shown to be an infective and effective nitrogen-fixing microsymbiont which can be distinguished from other frankiae, in vitro, on the basis of size, distinctive morphology, and growth characteristics. Cross-inoculation studies indicated that the host range of this symbiont encompasses all of the members of the genera Alnus, Myrica, and Comptonia tested. In all cases, the symbioses developed were effective in fixing atmospheric dinitrogen.


2021 ◽  
Author(s):  
Tal Noy-Porat ◽  
Adva Mechaly ◽  
Yinon Levy ◽  
Efi Makdasi ◽  
Ron Alcalay ◽  
...  

AbstractSince the onset of the current COVID-19 pandemic, high priority is given to the development of neutralizing antibodies, as a key approach for the design of therapeutic strategies to countermeasure and eradicate the disease. Previously, we reported the development of human therapeutic monoclonal antibodies (mAbs) exhibiting very high protective ability. These mAbs recognize epitopes on the spike receptor binding domain (RBD) of SARS-CoV-2 that is considered to represent the main rout of receptor engagement by the SARS-CoV-2 virus. The recent emergence of viral variants emphasizes the notion that efficient antibody treatments need to rely on mAbs against several distinct key epitopes in order to circumvent the occurrence of therapy escape-mutants. Here we report the isolation and characterization of 12 neutralizing mAbs, identified by screening a phage-display library constructed from lymphatic cells collected from severe COVID-19 patients. The antibodies target three distinct epitopes on the spike N-terminal domain (NTD) of SARS-CoV-2, one of them defining a major site of vulnerability of the virus. Extensive characterization of these mAbs suggests a neutralization mechanism which relies both on amino-acid and N-glycan recognition on the virus, and involvement of receptors other than the hACE2 on the target cell. Two of the selected mAbs, which demonstrated superior neutralization potency in vitro, were further evaluated in vivo, demonstrating their ability to fully protect K18-hACE2 transgenic mice even when administered at low doses and late after infection. The study demonstrates the high potential of the mAbs for therapy of SARS-CoV-2 infection and underlines the possible role of the NTD in mediating infection of host cells via alternative cellular portals other than the canonical ACE2 receptor.


Parasitology ◽  
1983 ◽  
Vol 86 (2) ◽  
pp. 243-254 ◽  
Author(s):  
D. A. Stagg ◽  
A. S. Young ◽  
B. L. Leitch ◽  
J. G. Grootenhuis ◽  
T. T. Dolan

SUMMARYExperiments were carried out to determine the susceptibility of mammalian cells to infection with different species of Theileria in vitro. Sporozoites of Theileria parva (parva), Theileria parva (lawrencei) and Theileria taurotragi were isolated from Rhipicephalus appendiculatus ticks by grinding infected ticks in medium, filtering the suspension and concentrating by centrifugation. The sporozoites were used in attempts to infect in vitro peripheral blood leucocytes harvested from 16 different mammalian species which included 12 species of Bovidae from 6 different sub-families. The technique was shown to be both sensitive and reproducible. The sporozoites of T. parva (parva) infected and transformed cells from 2 species of the sub-family Bovinae, the two cattle types and African buffalo. Theileria parva (lawrencei) infected and transformed cells from the two cattle types, African buffalo and Defassa waterbuck. Theileria taurotragi sporozoites infected in vitro cells from 11 different species of Bovidae which were members of 6 sub-families; Bovinae, Tragelaphinae, Reduncinae, Alcelaphinae, Antilopinae and Caprinae. Transformed lymphoblastoid cell lines were established from 7 of the species infected. Sporozoite attachment and infection was not observed with non-susceptible bovid host cells, nor were any of the non-bovid leucocytes infected by the parasites. The host range observed in this study corresponded to the known host range in vivo.


1991 ◽  
Vol 279 (1) ◽  
pp. 155-158 ◽  
Author(s):  
E Brostedt ◽  
S Nordlund

A pyruvate oxidoreductase with the capacity to support pyruvate-dependent nitrogenase activity in vitro has been purified from the photosynthetic bacterium Rhodospirillum rubrum. The enzyme requires CoA for activity and is irreversibly inactivated by oxygen. The molecular properties and Km values for the substrates have been studied. In supporting nitrogenase activity addition of ferredoxin is required. Overall the enzyme is similar to the nif-specific pyruvate: flavodoxin oxidoreductase purified from Klebsiella pneumoniae.


2007 ◽  
Vol 51 (7) ◽  
pp. 2403-2411 ◽  
Author(s):  
Ana M. Sanchez ◽  
Diane Thomas ◽  
Eugene J. Gillespie ◽  
Robert Damoiseaux ◽  
Joseph Rogers ◽  
...  

ABSTRACT Anthrax lethal toxin is one of the fundamental components believed to be responsible for the virulence of Bacillus anthracis. In order to find novel compounds with anti-lethal toxin properties, we used a cell-based assay to screen a collection of approximately 500 small molecules. Nineteen compounds that blocked lethal toxin-mediated killing of RAW 264.7 macrophages were identified, and we report here on the characterization of the two most potent antitoxic compounds, amiodarone and bepridil. These drugs are used to treat cardiac arrhythmia or angina in humans at doses similar to those that provide protection against lethal toxin in vitro. Our results support a model whereby the antitoxic properties of both drugs result from their ability to block endosomal acidification, thereby blocking toxin entry. Amiodarone was tested in vivo and found to significantly increase survival of lethal toxin-challenged Fischer rats.


1999 ◽  
Vol 12 (6) ◽  
pp. 515-525 ◽  
Author(s):  
Rosarita Taté ◽  
Michele Cermola ◽  
Anna Riccio ◽  
Maurizio Iaccarino ◽  
Mike Merrick ◽  
...  

Under conditions of nitrogen limitation, soil bacteria of the genus Rhizobium are able to induce the development of symbiotic nodules on the roots of leguminous plants. During nodule organogenesis, bacteria are released endocytotically inside the invaded plant cells where they differentiate into their endosymbiotic form called bacteroids. Bacteroids surrounded by a plant-derived peribacteroid membrane are nondividing, organelle-like structures, called symbiosomes, that use nitrogenase to reduce N2 to ammonia. Experiments performed in vitro with isolated symbiosomes have previously led to the suggestion that the NH3 produced by the bacteroids is released as NH4+ into the plant cytosol. Furthermore, it was observed that the bacterial amtB (ammonium/methylammonium transport B) gene is switched off very early during symbiosis, just when bacteria are released into the host cells. We report here that the ectopic expression of amtB in bacteroids alters the ability of bacteria to invade the host cells and the symbiosome differentiation process. Both the NtrC protein, which controls the expression of the bacterial genes involved in NH4+ assimilation, and the nitrogenase activity are essential to observe the amtB-mediated effect. Our results support the idea that in vivo bacteroids do not take up NH4+ and demonstrate that the transcriptional down-regulation of the amtB gene is essential for an effective symbiotic interaction.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2020 ◽  
Author(s):  
Avik Sotira Scientific

UNSTRUCTURED Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide™ (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein “spike” (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide™. Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide™ efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTide™ therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.10.13.337584


Sign in / Sign up

Export Citation Format

Share Document