Production of pili on Vibrio parahaemolyticus

1988 ◽  
Vol 34 (11) ◽  
pp. 1279-1281 ◽  
Author(s):  
Takeshi Honda ◽  
Michiko Arita ◽  
Edelira Ayala ◽  
Toshio Miwatani

Electron microscopic examination showed that all strains of Vibrio parahaemolyticus examined had pili on their surface when the organism was grown on marine agar at 28 °C for 6–12 h. The pili were morphologically stable on heat treatment at 60 °C for 10 min, but both the lateral and polar flagella possessed by this organism were labile. No immunological cross-reactivity between pili of enterotoxigenic Escherichia coli and Vibrio cholerae non-01 and those of V. parahaemolyticus was observed.

2003 ◽  
Vol 71 (3) ◽  
pp. 1352-1360 ◽  
Author(s):  
Zeev Altboum ◽  
Myron M. Levine ◽  
James E. Galen ◽  
Eileen M. Barry

ABSTRACT The genes that encode the enterotoxigenic Escherichia coli (ETEC) CS4 fimbriae, csaA, -B, -C, -E, and -D′, were isolated from strain E11881A. The csa operon encodes a 17-kDa major fimbrial subunit (CsaB), a 40-kDa tip-associated protein (CsaE), a 27-kDa chaperone-like protein (CsaA), a 97-kDa usher-like protein (CsaC), and a deleted regulatory protein (CsaD′). The predicted amino acid sequences of the CS4 proteins are highly homologous to structural and assembly proteins of other ETEC fimbriae, including CS1 and CS2, and to CFA/I in particular. The csaA, -B, -C, -E operon was cloned on a stabilized plasmid downstream from an osomotically regulated ompC promoter. pGA2-CS4 directs production of CS4 fimbriae in both E. coli DH5α and Shigella flexneri 2a vaccine strain CVD 1204, as detected by Western blot analysis and bacterial agglutination with anti-CS4 immune sera. Electron-microscopic examination of Shigella expressing CS4 confirmed the presence of fimbriae on the bacterial surface. Guinea pigs immunized with CVD 1204(pGA2-CS4) showed serum and mucosal antibody responses to both the Shigella vector and the ETEC fimbria CS4. Among the seven most prevalent fimbrial antigens of human ETEC, CS4 is the last to be cloned and sequenced. These findings pave the way for CS4 to be included in multivalent ETEC vaccines, including an attenuated Shigella live-vector-based ETEC vaccine.


1987 ◽  
Vol 24 (4) ◽  
pp. 330-334 ◽  
Author(s):  
A. Pospischil ◽  
J. G. Mainil ◽  
G. Baljer ◽  
H. W. Moon

Histopathologic and electron microscopic examination of intestines of three calves and two cats revealed attaching effacing bacteria characteristic of enteropathogenic Escherichia coli (EPEC) in ileum, cecum, and colon. The attaching effacing bacteria in one of the calves contained bacteriophages, and an E. coli isolate from that calf was shown to produce Shiga-like toxin. These findings contribute to emerging evidence that attaching effacing intestinal bacteria are globally distributed pathogens in a variety of host species and that bacteriophage-mediated production of Shiga-like toxin is related to the virulence of such bacteria.


Author(s):  
K. S. McCarty ◽  
R. F. Weave ◽  
L. Kemper ◽  
F. S. Vogel

During the prodromal stages of sporulation in the Basidiomycete, Agaricus bisporus, mitochondria accumulate in the basidial cells, zygotes, in the gill tissues prior to entry of these mitochondria, together with two haploid nuclei and cytoplasmic ribosomes, into the exospores. The mitochondria contain prominent loci of DNA [Fig. 1]. A modified Kleinschmidt spread technique1 has been used to evaluate the DNA strands from purified whole mitochondria released by osmotic shock, mitochondrial DNA purified on CsCl gradients [density = 1.698 gms/cc], and DNA purified on ethidium bromide CsCl gradients. The DNA appeared as linear strands up to 25 u in length and circular forms 2.2-5.2 u in circumference. In specimens prepared by osmotic shock, many strands of DNA are apparently attached to membrane fragments [Fig. 2]. When mitochondria were ruptured in hypotonic sucrose and then fixed in glutaraldehyde, the ribosomes were released for electron microscopic examination.


Author(s):  
Veronika Burmeister ◽  
N. Ludvig ◽  
P.C. Jobe

Electron microscopic immunocytochemistry provides an important tool to determine the ultrastructural distribution of various molecules in both normal and pathologic tissues. However, the specific immunostaining may be obscured by artifactual immunoreaction product, misleading the investigator. Previous observations show that shortening the incubation period with the primary antibody from the generally used 12-24 hours to 1 hour substantially reduces the artifactual immunostaining. We now extend this finding by the demonstration of artifact-free ultrastructural localization of the Ca2/calmodulindependent cyclic nucleotide phosphodiesterase (CaM-dependent PDE) immunoreactivity in brain.Anesthetized rats were perfused transcardially with phosphate-buffered saline followed by a fixative containing paraformaldehyde (4%) and glutaraldehyde (0.25%) in PBS. The brains were removed, and 40μm sections were cut with a vibratome. The sections were processed for immunocytochemistry as described by Ludvig et al. Both non-immune rabbit serum and specific CaM-dependent PDE antibodies were used. In both experiments incubations were at one hour and overnight. The immunostained sections were processed for electron microscopic examination.


1973 ◽  
Vol 19 (8) ◽  
pp. 887-894
Author(s):  
Linda Poffenroth ◽  
J. W. Costerton ◽  
Nonna Kordová ◽  
John C. Wilt

Electron microscopic examination of a semipurified Chlamydia psittaci 6BC strain attenuated in chick embryo yolk sac revealed for the first time two morphologically distinct small elementary bodies which differ both in the ultrastructure of their surface layers and in their buoyant densities in sucrose gradients. Also, the morphology of the surface layers of the larger reticulate forms in cell-free systems is described for the first time. Many points of difference between the surface envelopes and internal structure of chlamydial particles and those of Gram-negative bacteria are discussed.


Sign in / Sign up

Export Citation Format

Share Document