Biomimetic, amorphous granules of polyhydroxyalkanoates: composition, mobility, and stabilization in vitro by proteins

1995 ◽  
Vol 41 (13) ◽  
pp. 115-123 ◽  
Author(s):  
Daniel M. Horowitz ◽  
Jeremy K. M. Sanders

It is a remarkable feature of poly(3-hydroxybutyrate) (PHB) that although the isolated polymer is highly crystalline, native PHB storage granules in cells are only found in an amorphous, mobile state. It has recently been proposed that the failure of PHB granules to crystallize is simply the result of slow nucleation kinetics that are operative for small, isolated particles. In support of this new model, we present here a straightforward procedure by which pure crystalline PHB can be reconstituted into submicron-size, detergent-coated artificial granules. The artificial granules are amorphous and stable in suspension, and they are essentially indistinguishable from their native counterparts in terms of size, morphology, molecular mobility, and density. Furthermore, when the surfactant coating is removed from the artificial granules by dialysis, the granules crystallize, verifying the nucleation hypothesis. In vivo, the PHB granule surface is likely to consist of both polypeptide and lipid; in vitro it is possible to prepare amorphous PHB granules that are stabilized solely by phospholipids or by any of several common proteins (serum albumin, casein, or ovalbumin). Artificial amorphous granules may be prepared from a variety of different bacterial PHAs and from blends of incompatible polyesters.Key words: polyhydroxyalkanoate, poly(3-hydroxybutyrate), granules, nucleation, latex.

2006 ◽  
Vol 81 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Miguel A. Sogorb ◽  
Carlos Álvarez-Escalante ◽  
Victoria Carrera ◽  
Eugenio Vilanova
Keyword(s):  

1983 ◽  
Vol 212 (2) ◽  
pp. 249-257 ◽  
Author(s):  
M J Imber ◽  
S V Pizzo

These studies explore the role of carbohydrate recognition systems and the direct involvement of terminal alpha 1-3-linked fucose in the clearance of lactoferrin from the murine circulation and in the specific binding of lactoferrin to receptors on murine peritoneal macrophages. As previously reported, radiolabelled lactoferrin cleared very rapidly (t1/2 less than 1 min) after intravenous injection into mice. However, competing levels of ligands specific for the hepatic galactose receptor (asialo-orosomucoid), the hepatic fucose receptor (fucosyl-bovine serum albumin), and the mononuclear-phagocyte system pathway recognizing mannose, N-acetylglucosamine and fucose (mannosyl-, N-acetylglucosaminyl- and fucosyl-bovine serum albumin) did not block radiolabelled lactoferrin clearance in vivo or binding to mouse peritoneal macrophage monolayers in vitro. Almond emulsin alpha 1-3-fucosidase was used to prepare defucosylated lactoferrin in which 88% of the alpha 1-3-linked fucose was hydrolysed. No difference in clearance or receptor binding was observed between radiolabelled native and defucosylated lactoferrin. Fucoidin, a fucose-rich algal polysaccharide, completely inhibits the clearance in vivo and macrophage binding in vitro of lactoferrin. This effect, however, is probably not the result of competition for binding to the fucose receptor, since gel-filtration studies demonstrated formation of a stable complex between lactoferrin and fucoidin. The present results indicate that the lactoferrin-clearance pathway is distinct from several pathways mediating glycoprotein clearance through recognition of terminal galactose, fucose, N-acetylglucosamine or mannose. Furthermore, alpha 1-3-linked fucose on lactoferrin is not essential for lactoferrin clearance in vivo or specific binding to macrophage receptors in vitro.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Andre Gonçalves Prospero ◽  
Lais Pereira Buranello ◽  
Carlos AH Fernandes ◽  
Lucilene Delazari dos Santos ◽  
Guilherme Soares ◽  
...  

Background: We evaluated the impacts of corona protein (CP) formation on the alternating current biosusceptometry (ACB) signal intensity and in vivo circulation times of three differently coated magnetic nanoparticles (MNP): bare, citrate-coated and bovine serum albumin-coated MNPs. Methods: We employed the ACB system, gel electrophoresis and mass spectrometry analysis. Results: Higher CP formation led to a greater reduction in the in vitro ACB signal intensity and circulation time. We found fewer proteins forming the CP for the bovine serum albumin-coated MNPs, which presented the highest circulation time in vivo among the MNPs studied. Conclusion: These data showed better biocompatibility, stability and magnetic signal uniformity in biological media for bovine serum albumin-coated MNPs than for citrate-coated MNPs and bare MNPs.


1993 ◽  
Vol 39 (6) ◽  
pp. 1082-1085 ◽  
Author(s):  
P W Masters ◽  
R B Payne

Abstract We measured ionized calcium concentrations in whole blood from 91 patients who had no clinical or biochemical evidence of disturbed calcium homeostasis and who had a wide range of serum albumin concentrations. We used both a standard Ciba-Corning 634 analyzer, which has a membrane-restricted saturated KCl reference electrode bridge, and a modified instrument with a 150 mmol/L NaCl bridge. After adjusting the externally standardized values from each instrument for their least-squares regressions on pH, there was a significant correlation between ionized calcium and albumin only with the standard analyzer. In contrast, only values from the modified instrument correlated with serum chloride; this was not explained by ionic strength or organic anion interferences. We conclude that there is unlikely to be any major advantage in using a membrane-restricted isotonic NaCl reference electrode for in vitro clinical measurements, although it may be of value for in vivo monitoring. The importance of measuring serum albumin when using most commercial ionized calcium analyzers is emphasized.


Life Sciences ◽  
2013 ◽  
Vol 92 (17-19) ◽  
pp. 883-889 ◽  
Author(s):  
Hao Li ◽  
Jinchao Zhong ◽  
Meijuan Huang ◽  
Ziran Li ◽  
Pingfan Rao

2020 ◽  
Vol 328 ◽  
pp. 339-349 ◽  
Author(s):  
Ayasha Patel ◽  
Natalja Redinger ◽  
Adrian Richter ◽  
Arcadia Woods ◽  
Paul Robert Neumann ◽  
...  

Nanomedicine ◽  
2019 ◽  
Vol 14 (16) ◽  
pp. 2169-2187 ◽  
Author(s):  
Ting Gong ◽  
Pei Zhang ◽  
Caifeng Deng ◽  
Yu Xiao ◽  
Tao Gong ◽  
...  

Aim: We aimed to construct human serum albumin-Kolliphor® HS 15 nanoparticles (HSA-HS15 NPs) to overcome the limitations in targeted therapy for rheumatoid arthritis (RA) and enhance the safety of drug-loaded HSA NPs. Methodology: Celastrol (CLT)-loaded HSA-HS15 NPs were prepared and the properties were adequately investigated; the treatment effect were evaluated in RA rats; in vitro and in vivo studies were performed to explain the mechanism. Results: CLT-HSA-HS15 NPs had remarkable treatment ability and enhanced safety in the treatment of RA compared with free CLT and CLT-HSA NPs. Conclusion: HSA-HS15 NPs could be a safe and efficient therapeutic strategy for the treatment of RA, because of the inflammatory targeting ability of albumin, the added HS15 and ELVIS effect (extravasation through leaky vasculature followed by inflammatory cell-mediated sequestration) of nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document