Comparative study of five polycyclic aromatic hydrocarbon degrading bacterial strains isolated from contaminated soils

1997 ◽  
Vol 43 (4) ◽  
pp. 368-377 ◽  
Author(s):  
Fadi Dagher ◽  
Eric Déziel ◽  
Patricia Lirette ◽  
Gilles Paquette ◽  
Jean-Guy Bisaillon ◽  
...  

Five polycyclic aromatic hydrocarbon (PAH) degrading bacterial strains, Pseudomonas putida 34, Pseudomonas fluorescens 62, Pseudomonas aeruginosa 57, Sphingomonas sp. strain 107, and the unidentified strain PL1, were isolated from two contaminated soils and characterized for specific features regarding PAH degradation. Degradation efficiency was determined by the rapidity to form clearing zones around colonies when sprayed with different PAH solutions and the growth in liquid medium with different PAHs as sole source of carbon and energy. The presence of plasmids, the production of biosurfactants, the effect of salicylate on PAH degradation, the transformation of indole to indigo indicating the presence of an aromatic ring dioxygenase activity, and the hybridization with the SphAb probe representing a sequence highly homologous to the naphthalene dioxygenase ferredoxin gene nahAb were examined. The most efficient strain in terms of substrate specificity and rapidity to degrade different PAHs was Sphingomonas sp. strain 107, followed by strain PL1 and P. aeruginosa 57. The less efficient strains were P. putida 34 and P. fluorescens 62. Each strain transformed indole to indigo, except strain PL1. Biosurfactants were produced by P. aeruginosa 57 and P. putida 34, and a bioemulsifier was produced by Sphingomonas sp. strain 107. The presence of salicylate in solid medium has accelerated the formation of clearing zones and the transformation of indole by Sphingomonas sp. strain 107 and P. aeruginosa 57 colonies. Plasmids were found in Sphingomonas sp. strain 107 and strain PL1. The SphAb probe hybridized with DNA extracted from each strain. However, hybridization signals were detected only in the plasmidic fraction of Sphingomonas sp. strain 107 and strain PL1. Using a polymerase chain reaction (PCR) approach, we determined that several genes encoding enzymes involved in the upper catabolic pathway of naphthalene were present in each strain. Sequencing of PCR DNA fragments revealed that, for all the five strains, these genes are highly homologous with respective genes found in the pah, dox, and nah opérons, and are arranged in a polycistronic operon. Results suggest that these genes are ordered in the five selected strains like the pah, nah, and dox opérons.Key words: polycyclic aromatic hydrocarbons, biodegradation, polymerase chain reaction, naphthalene catabolic genes.

2020 ◽  
Vol 26 (1) ◽  
pp. 41-48
Author(s):  
Marija Ljesevic ◽  
Jelena Milic ◽  
Gordana Gojgic-Cvijovic ◽  
Tatjana Solevic-Knudsen ◽  
Mila Ilic ◽  
...  

Within a 30-day incubation laboratory study, the polycyclic aromatic hydrocarbon (PAH) degradation profile of two bacteria, Planomicrobium sp. RNP01 and Rhodococcus sp. RNP05 were studied by three microtiter plate assays to reveal the combination of certain biological and biochemical characteristics which are reliable indicators in evaluation of bacterial biodegradation abilities. The three assays, which are hydrocarbon growth assay, 2,6-DCPIP assay and dehydrogenase activity assay revealed that Rhodococcus sp. RNP05 exhibited better potential for PAH degradation than Planomicrobium sp. RNP01. Differences between initial and final optical density and specific growth rate constants were significantly higher (r = 0.995, P < 0.05) in case of Rhodococcus sp. RNP05 on all tested substrates, as compared to Planomicrobium sp. RNP01. This was confirmed by GC-FID analyses. Dehydrogenase activity of Rhodococcus sp. RNP05 was higher (r = 0.9995, P < 0.05) than Planomicrobium sp. RNP01 and correlated positively with the hydrocarbon growth assay (r = 0.999, P < 0.05, for Rhodococcus sp. RNP05, r = 0.986, P < 0.05 for Planomicrobium sp. RNP01). This study has shown that the combination of these assays could be used for determining the bioremediation potential of PAHs in petroleum contaminated soil with the ability of screening a large number of bacterial strains.


2004 ◽  
Vol 23 (2) ◽  
pp. 245 ◽  
Author(s):  
Carolyn M. Acheson ◽  
Qin Zhou ◽  
Yonggui Shan ◽  
Gregory D. Sayles ◽  
Margaret J. Kupferle

2013 ◽  
Vol 22 (12) ◽  
pp. 8927-8941 ◽  
Author(s):  
Luchun Duan ◽  
Ravi Naidu ◽  
Palanisami Thavamani ◽  
Jean Meaklim ◽  
Mallavarapu Megharaj

1994 ◽  
Vol 40 (12) ◽  
pp. 1007-1018 ◽  
Author(s):  
J. L. W. Rademaker ◽  
J. D. Janse

To develop a rapid and reliable detection and identification method for Clavibacter michiganensis subsp. sepedonicus and C. michiganensis subsp. michiganensis, two biotinylated probes and derived primer sets were evaluated for specificity using a large number of bacterial strains. Detection in dot blot analysis using the Diagen probe against C. michiganensis subsp. sepedonicus was possible with all 32 C. michiganensis subsp. sepedonicus strains tested. Cross-hybridization occurred with all nine C. michiganensis subsp. insidiosus strains tested. No hybridization occurred with any of 54 other related and unrelated bacterial strains including C. michiganensis subsp. michiganensis, C. michiganensis subsp. nebraskensis, C. michiganensis subsp. tessellarius, C. iranicus, C. rathayi, and C. tritici and potato saprophytes. Hybridization of the MIC 1 probe against C. michiganensis subsp. michiganensis was obtained with 22 out of 24 C. michiganensis subsp. michiganensis strains. A weak hybridization signal occurred only with two strains of C. michiganensis subsp. insidiosns. No hybridization occurred with any of the 71 other related and unrelated bacterial strains tested including tomato saprophytes. Restriction fragment length polymorphisms detected with the Diagen probe allowed differentiation between C. michiganensis subsp. sepedonicus and the related C. michiganensis subsp. insidiosus. Restriction fragment length polymorphism analysis using the MIC 1 probe and BamH1 showed at least two groups of patterns within C. michiganensis subsp. michiganensis. By using a primer set derived from the Diagen probe, a DNA sequence could be amplified with all C. michiganensis subsp. sepedonicus strains tested. Only the nontarget organism C. michiganensis subsp. insidiosus yielded a similar polymerase chain reaction product. Restriction enzyme analysis of the polymerase chain reaction product enabled rapid distinction between the subspecies. With a CMM primer set derived from the MIC 1 probe a DNA sequence was amplified from the same 22 out of 24 C. michiganensis subsp. michiganensis strains that showed hybridization with the MIC 1 probe. The polymerase chain reaction product could be verified by restriction enzyme analysis. The Diagen and MIC 1 probes and derived primer sets were shown to be useful for the detection and identification of C. michiganensis subsp. sepedonicus and C. michiganensis subsp. michiganensis. The MIC 1 probe, however, failed to detect two strains of the latter subspecies.Key words: biotin, PCR, REA, potato bacterial ring rot, bacterial canker of tomato, RFLP, Clavibacter michiganensis subsp. insidiosus.


2017 ◽  
Vol 83 (24) ◽  
Author(s):  
Xuemei Yao ◽  
Fei Tao ◽  
Kunzhi Zhang ◽  
Hongzhi Tang ◽  
Ping Xu

ABSTRACTMicrobial bioremediation is a promising approach for the removal of polycyclic aromatic hydrocarbon (PAH) contaminants. Many degraders of PAHs possess efflux pump genes in their genomes; however, their specific roles in the degradation of PAHs have not been clearly elucidated. In this study, two efflux pumps, TtgABC and SrpABC, were systematically investigated to determine their functions in a PAH-degradingPseudomonas putidastrain B6-2 (DSM 28064). The disruption of genesttgABCorsrpABCresulted in a defect in organic solvent tolerance. TtgABC was found to contribute to antibiotic resistance; SrpABC only contributed to antibiotic resistance under an artificial overproduced condition. Moreover, a mutant strain withoutsrpABCdid not maintain its activity in long-term biphenyl (BP) degradation, which correlated with the loss of cell viability. The expression of SrpABC was significantly upregulated in the course of BP degradation. BP, 2-hydroxybiphenyl, 3-hydroxybiphenyl, and 2,3-dihydroxybiphenyl (2,3-DHBP) were revealed to be the inducers ofsrpABC. 2,3-DHBP was verified to be a substrate of pump SrpABC; SrpABC can enhance the tolerance to 2,3-DHBP by pumping it out. The mutant strain B6-2ΔsrpSprolonged BP degradation with the increase ofsrpABCexpression. These results suggest that the pump SrpABC of strain B6-2 plays a positive role in BP biodegradation by pumping out metabolized toxic substances such as 2,3-DHBP. This study provides insights into the versatile physiological functions of the widely distributed efflux pumps in the biodegradation of PAHs.IMPORTANCEPolycyclic aromatic hydrocarbons (PAHs) are notorious for their recalcitrance to degradation in the environment. A high frequency of the occurrence of the efflux pump genes was observed in the genomes of effective PAH degraders; however, their specific roles in the degradation of PAHs are still obscure. The significance of our study is in the identification of the function and mechanism of the efflux pump SrpABC ofPseudomonas putidastrain B6-2 (DSM 28064) in the biphenyl degradation process. SrpABC is crucial for releasing the toxicity caused by intermediates that are unavoidably produced in PAH degradation, which enables an understanding of how cells maintain the intracellular balance of materials. The findings from this study provide a new perspective on PAH recalcitrance and shed light on enhancing PAH degradation by genetic engineering.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Anithadevi Kenday Sivaram ◽  
Panneerselvan Logeshwaran ◽  
Suresh R. Subashchandrabose ◽  
Robin Lockington ◽  
Ravi Naidu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document