Immunolocalization of a β-1,4-endoglucanase from Macrophomina phaseolina expressed in planta

1997 ◽  
Vol 43 (5) ◽  
pp. 491-495 ◽  
Author(s):  
Richard W. Jones ◽  
Haiyin Wang

The in planta endoglucanase production by Macrophomina phaseolina was analyzed by probing tissue blots with a peptide-specific antibody. Endoglucanase (EGL 1) was readily detected at 60 h after microsclerotial inoculation to corn and tobacco stems. Production continued through the study, along with growth of the fungus in stem tissue. Endoglucanase was rapidly transported through the xylem, resulting in distribution to distal portions of the plant. Production at the site of infection was correlated with symptom expression, suggesting a role for endoglucanases in disease progression.Key words: cellulase, charcoal rot.

Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1318-1318 ◽  
Author(s):  
J. D. Weems ◽  
S. A. Ebelhar ◽  
V. Chapara ◽  
D. K. Pedersen ◽  
G. R. Zhang ◽  
...  

In September 2009, sunflower (Helianthus annuus L.) plants (cv. Mycogen 8C451) from a University of Illinois field research trial in Fayette County, Illinois exhibited silvery gray girdling lesions on the lower stems and premature death. When lower stems and roots were split open, the pith tissue was compressed into layers. Black microsclerotia (90 to 180 μm) were present on the outside of the lower stem tissue and in the stem vascular tissue. Five pieces (approximately 1 cm long) of symptomatic stem tissue from five different affected plants (25 pieces total) were soaked in a 0.5% solution of NaOCl for 30 s, rinsed with sterile distilled water, and placed on potato dextrose agar (PDA; Becton, Dickinson, and Company, Franklin Lakes, NJ). Gray hyphae grew from all of the stem pieces, which subsequently turned black and formed black microsclerotia (75 to 175 μm). On the basis of plant symptoms and size and color of the microsclerotia, the disease was diagnosed as charcoal rot caused by Macrophomina phaseolina (Tassi) Goid (2). To confirm that the isolated fungus was M. phaseolina, DNA was extracted from the pure culture, and PCR amplification of a subunit rDNA and internal transcribed spacer (ITS) region with primers EF3RCNL and ITS4 was performed (3). The Keck Biotechnology Center at the University of Illinois, Urbana sequenced the PCR product. The resulting nucleotide sequence shared the highest homology (99%) with sequences of M. phaseolina when compared with the subunit rDNA and ITS sequences in the nucleotide database ( http://www.ncbi.nlm.nih.gov ). A greenhouse experiment was conducted to confirm pathogenicity; the greenhouse temperature was approximately 27°C and sunflower plants (cv. Cargill 270) were grown in pots and watered daily to maintain adequate soil moisture for growth. Sterile toothpicks were infested with M. phaseolina and placed through the stems (10 cm above the soil surface) of five 40-day-old sunflower plants that were approximately at growth stage R4 (1,4). Five sterile, noninfested toothpicks were similarly placed through sunflower plants to act as controls. Parafilm was used to hold the toothpick in the stem and seal the stem injury. Thirty-five days after inoculation, the mean lesion length on stems inoculated with M. phaseolina was 595 mm and no lesions developed on the control plants. M. phaseolina-inoculated plants also began to wilt and die. Cultures identical to the original M. phaseolina isolate were reisolated from stem lesions of the M. phaseolina-inoculated plants. This is the first report of charcoal rot on sunflower in Illinois to our knowledge. Sunflower is currently not a major crop grown in Illinois, but on-going research is focused on evaluating sunflower as a potential late-planted crop to follow winter wheat. If sunflower production increases in Illinois, growers may need to take precautions to manage charcoal rot. References: (1) L. K. Edmunds. Phytopathology 54:514, 1964. (2) T. Gulya et al. Page 263 in: Sunflower Technology and Production. American Society of Agronomy, Madison, WI, 1997. (3) N. S. Lord et al. FEMS Microbiol. Ecol. 42:327, 2002. (4) A. A. Schneiter and J. F. Miller. Crop Sci. 21:901, 1981.


Plant Disease ◽  
2003 ◽  
Vol 87 (5) ◽  
pp. 601-601 ◽  
Author(s):  
C. A. Bradley ◽  
L. E. del Río

In late August 2002, patches of soybean (Glycine max) plants in a field in Richland County, ND exhibited symptoms and signs of charcoal rot and died prematurely. Dead plants had a silvery-gray appearance, and black microsclerotia (76 ± 28 μm in diameter) were present in the vascular tissue of the lower stems and roots. Stem tissue was placed in petri dishes containing potato dextrose agar (PDA). Gray hyphae grew from the stem tissue and subsequently turned black and formed microsclerotia (188 × 139 ± 48 μm). The fungus was identified as Macrophomina phaseolina (Tassi) Goid. based on colony color and morphology and size of the microsclerotia (1). To confirm pathogenicity, soybean plants (cv. Garst D 041 RR) were grown in the greenhouse and inoculated with the previously obtained isolate of M. phaseolina. Stems of soybean plants at the V2 stage were excised just below the third node. Mycelia plugs of a 1-week-old culture of M. phaseolina were placed into the large end of disposable micropipette tips (200 μl). The micropipette tips containing the M. phaseolina culture were subsequently placed over 10 excised soybean stems. To serve as a control, 10 excised soybean stems were inoculated with micropipette tips containing plugs of noninfested PDA. Thirty days after inoculation, micropipette tips were removed, and lesions that had developed on the stem were measured. The mean lesion length of M. phaseolina inoculated stems was 7 mm; no lesions developed on the control plants. M. phaseolina was reisolated from infected tissue of inoculated plants that were placed on PDA. Charcoal rot was only observed in the Richland County field; however, no surveys were conducted to determine the prevalence of the disease throughout the soybean production area of North Dakota. Because it is now known that this disease occurs in North Dakota, growers, extension personnel, and crop consultants must scout for the disease and practice recommended management strategies. Reference: (1) G. S. Smith and T. D. Wyllie. Charcoal rot. Pages 29–31 in: Compendium of Soybean Diseases, 4th ed. G. L. Hartman, J. B. Sinclair, and J. C. Rupe, eds. The American Phytopathological Society, St. Paul, MN, 1999.


Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 645 ◽  
Author(s):  
Hamed K. Abbas ◽  
Nacer Bellaloui ◽  
Cesare Accinelli ◽  
James R. Smith ◽  
W. Thomas Shier

Charcoal rot disease, caused by the fungus Macrophomina phaseolina, results in major economic losses in soybean production in southern USA. M. phaseolina has been proposed to use the toxin (-)-botryodiplodin in its root infection mechanism to create a necrotic zone in root tissue through which fungal hyphae can readily enter the plant. The majority (51.4%) of M. phaseolina isolates from plants with charcoal rot disease produced a wide range of (-)-botryodiplodin concentrations in a culture medium (0.14–6.11 µg/mL), 37.8% produced traces below the limit of quantification (0.01 µg/mL), and 10.8% produced no detectable (-)-botryodiplodin. Some culture media with traces or no (-)-botryodiplodin were nevertheless strongly phytotoxic in soybean leaf disc cultures, consistent with the production of another unidentified toxin(s). Widely ranging (-)-botryodiplodin levels (traces to 3.14 µg/g) were also observed in the roots, but not in the aerial parts, of soybean plants naturally infected with charcoal rot disease. This is the first report of (-)-botryodiplodin in plant tissues naturally infected with charcoal rot disease. No phaseolinone was detected in M. phaseolina culture media or naturally infected soybean tissues. These results are consistent with (-)-botryodiplodin playing a role in the pathology of some, but not all, M. phaseolina isolates from soybeans with charcoal rot disease in southern USA.


2021 ◽  
Vol 84 (2) ◽  
pp. 459-465
Author(s):  
Marco Masi ◽  
Francisco Sautua ◽  
Roukia Zatout ◽  
Stefany Castaldi ◽  
Lorenzo Arrico ◽  
...  

2003 ◽  
Vol 28 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Álvaro M. R. Almeida ◽  
Lilian Amorim ◽  
Armando Bergamin Filho ◽  
Eleno Torres ◽  
José R. B. Farias ◽  
...  

The increase in incidence of charcoal rot caused by Macrophomina phaseolina on soybeans (Glycine max) was followed four seasons in conventional and no-till cropping systems. In the 1997/98 and 2000/01 seasons, total precipitation between sowing and harvest reached 876.3 and 846.9 mm, respectively. For these seasons, disease incidence did not differ significantly between the no-till and conventional systems. In 1998/99 and 1999/00 precipitation totaled 689.9 and 478.3 mm, respectively. In 1998/99, in the no-till system, the disease incidence was 43.7% and 53.1% in the conventional system. In 1999/00 the final incidence was 68.7% and 81.2% for the no-till and conventional systems, respectively. For these two seasons, precipitation was lower than that required for soybean crops (840 mm), and the averages of disease incidence were significantly higher in the conventional system. The concentration of microsclerotia in soil samples was higher in samples collected in conventional system at 0 - 10 cm depth. However, analysis of microsclerotia in roots showed that in years with adequate rain no difference was detected. In dry years, however, roots from plants developed under the conventional system had significantly more microsclerotia. Because of the wide host range of M. phaseolina and the long survival times of the microsclerotia, crop rotation would probably have little benefit in reducing charcoal rot. Under these study conditions it may be a better alternative to suppress charcoal rot by using the no-till cropping system to conserve soil moisture and reduce disease progress.


2008 ◽  
Vol 9 (1) ◽  
pp. 16 ◽  
Author(s):  
J. A. Wrather ◽  
J. G. Shannon ◽  
T. E. Carter ◽  
J. P. Bond ◽  
J. C. Rupe ◽  
...  

Charcoal rot caused by Macrophomina phaseolina is a common disease of many crops including common bean and soybean. Incidence and severity of charcoal rot are enhanced when plants are drought stressed. Resistance to this pathogen in some common bean genotypes was associated with drought tolerance. Resistance to M. phaseolina among soybean genotypes has not been identified, although a few have been rated moderately resistant based on less root tissue colonization by this pathogen compared to other genotypes. A few soybean genotypes have been rated as slow-wilt or drought-tolerant. The reaction of drought-tolerant soybean to M. phaseolina compared to intolerant or drought-sensitive genotypes has not been determined. Our objective was to determine if there were differences in root colonization by M. phaseolina between drought-tolerant and drought-sensitive soybean genotypes. Drought tolerance of the soybean genotypes and root colonization by M. phaseolina at the R6 and R8 stages of growth were not related in this study. Some drought-tolerant soybean genotypes may resist root colonization by M. phaseolina, but our results suggest that this is not true for all drought-tolerant genotypes. Accepted for publication 21 March 2008. Published 18 June 2008.


Plant Disease ◽  
2018 ◽  
Vol 102 (7) ◽  
pp. 1459 ◽  
Author(s):  
S. Hyder ◽  
A. S. Gondal ◽  
R. Ahmed ◽  
S. T. Sahi ◽  
A. Rehman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document