A conserved cysteine residue in yeast uroporphyrinogen decarboxylase is not essential for enzymatic activity

1997 ◽  
Vol 43 (8) ◽  
pp. 792-795 ◽  
Author(s):  
Celestino Di Flumeri ◽  
Nicholas H. Acheson ◽  
Teresa Keng

Uroporphyrinogen decarboxylase catalyzes the fifth step of heme biosynthesis in Saccharomyces cerevisiae. Studies utilizing sulfhydryl-specific reagents suggest that the enzyme requires a cysteine residue within the catalytic site This hypothesis was tested directly by site-directed mutagenesis of highly conserved cysteine-52 to serine or alanine. Plasmids containing these mutations were able to complement a hem6 mutant strain. In addition, properties associated with decreased uroporphyrinogen decarboxylase activity were not detected in the mutant strain transformed with these mutant plasmids. These results suggest that the conserved cysteine-52 by itself is not essential for enzymatic activity.Key words: heme biosynthesis, uroporphyrinogen decarboxylase, site-directed mutagenesis.

2014 ◽  
Vol 80 (20) ◽  
pp. 6549-6559 ◽  
Author(s):  
Sabrina Wemhoff ◽  
Roland Klassen ◽  
Friedhelm Meinhardt

ABSTRACTZymocin is aKluyveromyces lactisprotein toxin composed of αβγ subunits encoded by the cytoplasmic virus-like element k1 and functions by αβ-assisted delivery of the anticodon nuclease (ACNase) γ into target cells. The toxin binds to cells' chitin and exhibits chitinase activityin vitrothat might be important during γ import.Saccharomyces cerevisiaestrains carrying k1-derived hybrid elements deficient in either αβ (k1ORF2) or γ (k1ORF4) were generated. Loss of either gene abrogates toxicity, and unexpectedly, Orf2 secretion depends on Orf4 cosecretion. Functional zymocin assembly can be restored by nuclear expression of k1ORF2 or k1ORF4, providing an opportunity to conduct site-directed mutagenesis of holozymocin. Complementation required active site residues of α's chitinase domain and the sole cysteine residue of β (Cys250). Since βγ are reportedly disulfide linked, the requirement for the conserved γ C231 was probed. Toxicity of intracellularly expressed γ C231A indicated no major defect in ACNase activity, while complementation of k1ΔORF4 by γ C231A was lost, consistent with a role of β C250 and γ C231 in zymocin assembly. To test the capability of αβ to carry alternative cargos, the heterologous ACNase fromPichia acaciae(P. acaciaeOrf2 [PaOrf2]) was expressed, along with its immunity gene, in k1ΔORF4. While efficient secretion of PaOrf2 was detected, suppression of the k1ΔORF4-derived k1Orf2 secretion defect was not observed. Thus, the dependency of k1Orf2 on k1Orf4 cosecretion needs to be overcome prior to studying αβ's capability to deliver other cargo proteins into target cells.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6806
Author(s):  
Bruna F. Mazzeu ◽  
Tatiana M. Souza-Moreira ◽  
Andrew A. Oliveira ◽  
Melissa Remlinger ◽  
Lidiane G. Felippe ◽  
...  

Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demonstrates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated intermediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was expressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and β-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.


2021 ◽  
Author(s):  
◽  
Reem Hanna

<p>Peloruside A, a natural product isolated from the marine sponge Mycale hentscheli, is a microtubule-stabilising agent that has a similar mechanism of action to the anticancer drug paclitaxel and is cytotoxic to cultured mammalian cells. Peloruside appears to bind to a distinct site on mammalian tubulin that is different from that of the taxoid-site drugs. Because of the high sequence homology between yeast and mammalian tubulin, Saccharomyces cerevisiae (S. cerevisiae) was used as a model organism to characterise the peloruside-binding site with the aim of advancing our understanding about this site on mammalian tubulin. Wild type S. cerevisiae (BY4741) was sensitive to peloruside at uM concentrations; however, a strain that lacks the mad2 (Mitotic Arrest Deficient 2) gene showed increased sensitivity to the drug at much lower uM concentrations. This gene is a component of the spindle-assembly checkpoint complex that delays the onset of anaphase in cells with defects in mitotic spindle assembly. The main aims of this project were to define the binding site of peloruside A using yeast tubulin to see if microtubule function and/or morphology is altered in yeast by peloruside, and to identify any secondary drug targets "friends of the target" through chemical genetic interactions profiling (Homozygous deletion profiling microarray). Site-directed mutagenesis was used to mutate two conserved amino acids (A296T; R306H) known to confer resistance to peloruside in mammalian cells. Based on a published computer model of the peloruside binding site on mammalian tubulin, we also mutated three other amino acids, two that were predicted to affect peloruside binding (Q291M and N337L), and one that was predicted to affect laulimalide binding but have little affect on peloruside binding (V333W). We also included a negative control that was predicted to have no effect on peloruside binding (R282Q) and would affect epothilone binding. We found that of the six point mutations, only Q291M failed to confer resistance in yeast and instead it increased the inhibition to the drug. Using a bud index assay, confocal microscopy, and flow cytometry, 40-50 uM peloruside was shown to block cells in G2/M of the cell cycle, confirming a direct action of the drug on microtubule function. Homozygous profiling (HOP) microarray analysis of a deletion mutant set of yeast genes was also carried out to identify gene products that interact with peloruside in order to link the drug to specific networks or biochemical pathways in the cells. From site-directed mutagenesis, we concluded that peloruside binds to yeast B-tubulin in the region predicted by the published model of the binding site, and therefore mapping the site on yeast tubulin could provide useful information about the mammalian binding site for peloruside. The bud index, flow cytometry, and confocal microscopy experiments provided further evidence that peloruside interacts with yeast tubulin. From HOP we found that peloruside has roles in the cell cycle, as expected, and has effects on protein transport, secretion, cell wall synthesis, and steroid biosynthesis pathways.</p>


FEBS Letters ◽  
1998 ◽  
Vol 435 (1) ◽  
pp. 16-20 ◽  
Author(s):  
Jinq-May Chen ◽  
Richard A.E. Stevens ◽  
Paul W. Wray ◽  
Neil D. Rawlings ◽  
Alan J. Barrett

2010 ◽  
Vol 69 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Céline Domecq ◽  
Maria Kireeva ◽  
Jacques Archambault ◽  
Mikhail Kashlev ◽  
Benoit Coulombe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document