Establishment and characterization of a fibroblast cell line derived from Texel sheep

2009 ◽  
Vol 87 (3) ◽  
pp. 485-492 ◽  
Author(s):  
Linfeng F. Li ◽  
Weijun J. Guan ◽  
Han Li ◽  
Xueyan Z. Zhou ◽  
Xiujuan J. Bai ◽  
...  

A Texel sheep ear marginal tissue fibroblast cell line (named TSF19) was successfully established by using a primary explant technique and cell cryoconservation technology. TSF19 cells were adherent, with a population doubling time of 24.9 h. Chromosome analysis showed that >90% of cells were diploid prior to cell passage 4. Isoenzyme analyses of lactate dehydrogenase and malate dehydrogenase showed that the TSF19 cells had no cross-contamination with other species. Tests for cell line contamination with bacteria, fungi, or mycoplasmas were also negative. Plasmids encoding the fluorescent proteins pEGFP-N3, pECFP-N1, pDsRed1-N1, and pEYFP-N1 were transfected into cells to study exogenous gene expression in the cells. The plasmid transfection efficiency was between 21.8% and 46.5%. This newly established cell line will not only preserve the genetic resources of the important Texel sheep at the cell level but will also provide a valuable resource for genomic, postgenomic, somatic cloning research.

2009 ◽  
Vol 89 (4) ◽  
pp. 463-466
Author(s):  
X Liu ◽  
L -F Li ◽  
X Li ◽  
Y Ma ◽  
W Guan

The Songliao Black pig was the first lean-meat maternal breed bred in China. To preserve genetic diversity of this breed, we designed a procedure to use ear marginal tissue of one male pig to establish a fibroblast cell line (designated SBPF18), which was subsequently characterized according to the population doubling time, karyotype analysis, isoenzyme assay, DNA fingerprint and sex determination, meanwhile microbial contamination assays were conducted to demonstrate the cell line was contamination-free. This method is suitable for establishing the fibroblast cell line from small amounts of tissue, and could further facilitate genomic studies and genetic modification.Key words: Songliao Black pig, fibroblast cell line, primary explants technique, cryogenic preservation


2008 ◽  
Vol 18 (2) ◽  
pp. 339-344 ◽  
Author(s):  
H.-J. Schulten ◽  
J. Wolf-Salgó ◽  
C. Gründker ◽  
B. Gunawan ◽  
L. FÜZESI

We describe the newly established cell line CS-99 derived from a uterine carcinosarcoma retaining features of the sarcomatous phenotype in vitro. CS-99 cells exhibit a mesenchymal morphology with predominantly spindle-shaped cells at nonconfluence turning to pleomorphic appearance at confluence. The mesenchymal phenotype was evidenced immunohistochemically by strong vimentin and moderate SM-actin, which was similar to the sarcomatous component of the primary tumor. P53 was overexpressed in a subset of CS-99 cells. Epithelial membrane antigen was moderately expressed whereas other markers including pan CK, CK 5/6, CK 34, epidermal growth factor receptor, desmin, carcinoembryonic antigen, S100, KIT, ERBB2, and the hormone receptors, estrogen receptor and progesterone receptor revealed either weak or no specific staining in CS-99 cells. High self-renewal capacity corresponded to the population doubling time of 23 h in high passage. CS-99 cells were able to develop three-dimensional tumor spheroids in vitro. Cytogenetic analysis and multicolor fluorescence in situ hybridization of CS-99 demonstrated an almost stable karyotype including numerical changes +8, +18, and +20 and translocations, amongst others der(1)t(1;2), der(1)t(1;7), der(2)t(2;19), der(5)t(5;8), and der(5)t(5;14). Taken together, the cell line CS-99 exhibits strong growths dynamics and a complex but stable karyotype in higher passages, and can be further a useful in vitro model system for studying tumor biology of carcinosarcomas.


2006 ◽  
Vol 192 (7) ◽  
pp. 743-751 ◽  
Author(s):  
Barbara A. Murphy ◽  
Mandi M. Vick ◽  
Dawn R. Sessions ◽  
R. Frank Cook ◽  
Barry P. Fitzgerald

Biologia ◽  
2008 ◽  
Vol 63 (2) ◽  
Author(s):  
Marica Theiszová ◽  
Soňa Jantová ◽  
Silvia Letašiová ◽  
Ľuboš Valík ◽  
Martin Palou

AbstractThe number of biomaterials used in biomedical applications has rapidly increased in the past two decades. Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetically prepared composite that in its structure contains the same molecular concentration of OH− groups and F− ions. The aim of this experimental investigation was to use the embryonal mouse fibroblast cell line NIH-3T3 for comparative study of basal cytotoxicity of fluoridated biomaterials FHA and FA discs. Hydroxyapatite (HA) disc, high-density polyethylene as negative control and polyvinyl chloride (PVC) containing organotin stabilizer as positive control were used as standard biomaterials. The appropriateness of the use of NIH-3T3 cells and their sensitivity for tested biomaterials were evaluated on the basis of five cytotoxic end points: cell proliferation, cell morphology, lactate dehydrogenase (LDH) released, protein and DNA cell content. The basal cytotoxicity of FHA, FA and HA discs was measured by direct contact method. FHA composite, FA and HA demonstrated in cell line NIH-3T3 nearly similar basal cytotoxicity increasing with the time of treatment. After 72 h of biomaterials treatment, about 25% inhibition of cell number, unchanged morphology of dividing cells, 6.31–0.16% increase of released LDH, about 10% inhibition of cell protein content and about 20% inhibition of DNA content was found. On the other hand, from the growth rates it resulted that NIH-3T3 cells, affected by tested biomaterials, divided about 20% slowlier than the control (untreated cells). Using the linear regression analysis we found out that deviations in measurements of cytotoxicity by four methods were as follows: less than 10% for cell number, protein and DNA content methods and 12.4% for released LDH method. Based on a good correlation of the cytotoxicity of biomaterials obtained from all end points we could conclude that fibroblast NIH-3T3 cell line was appropriate for measuring the basal cytoxicity of tested biomaterials.


Nature ◽  
1974 ◽  
Vol 248 (5448) ◽  
pp. 514-515 ◽  
Author(s):  
E. V. ELLIOTT ◽  
R. S. KERBEL ◽  
B. J. PHILLIPS

1989 ◽  
Vol 9 (8) ◽  
pp. 3524-3532
Author(s):  
V Dhar ◽  
A I Skoultchi ◽  
C L Schildkraut

To investigate whether a switch in the transcriptional activity of a gene is associated with a change in the timing of replication during the S phase, we examined the replication timing of the beta-globin genes in two different types of somatic cell hybrids. In mouse hepatoma (Hepa 1a) x mouse erythroleukemia (MEL) hybrid cells, the beta-globin gene from the MEL parent is transcriptionally inactivated and is later replicating than in the parental MEL cell line. In human fibroblast (GM3552) x MEL hybrid cells, the human beta-globin gene is transcriptionally activated, and all of the sequences within the human beta-globin domain (200 kilobases) we have examined appear to be earlier replicating than those in the parental fibroblast cell line. The chromatin configuration of the activated human beta-globin domain in the hybrids is relatively more sensitive to nucleases than that in the fibroblasts. Furthermore, major nuclease-hypersensitive sites that were absent in the chromatin flanking the distal 5' region of the human beta-globin gene cluster in the parental fibroblast cell line are present in the transcriptionally activated domain in the hybrid cell line. These results suggest that timing of replication of globin genes has been altered in these hybrid cells and thus is not fixed during the process of differentiation.


Sign in / Sign up

Export Citation Format

Share Document