AMINO ACID TRANSPORT IN BRAIN CORTEX SLICES: II. COMPETITION BETWEEN AMINO ACIDS

1962 ◽  
Vol 40 (11) ◽  
pp. 1591-1602 ◽  
Author(s):  
P. N. Abadom ◽  
P. G. Scholefield

Evidence is presented which indicates that several amino acid transport systems are present in rat brain cortex slices, each with its own specificity with regard to substrate and with regard to amino acids which produce inhibitory effects. The nature of these inhibitory effects may be either direct (competition for a limiting number of sites) or indirect (as they are when glutamate or aspartate cause a decrease in the ATP content).Comparison of the specificities of the glycine transport systems present in rat brain cortex slices and in Ehrlich ascites carcinoma cells indicates that these two systems have little in common and the relation of this finding to the structural requirements necessary for chemotherapeutic activity is discussed.

1962 ◽  
Vol 40 (1) ◽  
pp. 1591-1602 ◽  
Author(s):  
P. N. Abadom ◽  
P. G. Scholefield

Evidence is presented which indicates that several amino acid transport systems are present in rat brain cortex slices, each with its own specificity with regard to substrate and with regard to amino acids which produce inhibitory effects. The nature of these inhibitory effects may be either direct (competition for a limiting number of sites) or indirect (as they are when glutamate or aspartate cause a decrease in the ATP content).Comparison of the specificities of the glycine transport systems present in rat brain cortex slices and in Ehrlich ascites carcinoma cells indicates that these two systems have little in common and the relation of this finding to the structural requirements necessary for chemotherapeutic activity is discussed.


1965 ◽  
Vol 43 (7) ◽  
pp. 835-840 ◽  
Author(s):  
T. Itoh

Rat brain cortex slices were incubated with glucose-U-C14 in normal Krebs–Ringer phosphate media and also media 105 mM in potassium ions. Intracellular labelling of amino acids, such as glutamic acid, glutamine, γ-aminobutyric acid, aspartic acid, and alanine, was estimated by radioautography according to the method of Kini and Quastel. The respiration of brain cortex slices was little affected by the presence of phenylpyruvate. However, the formation of these amino acids was strongly suppressed. Moreover, in high-potassium media, the inhibitory effects of phenylpyruvate were greatly magnified. The addition of phenylalanine had no significant effect either on the oxygen consumption or on the amino acid formation when brain cortex slices were incubated with glucose-U-C14.


1977 ◽  
Vol 55 (3) ◽  
pp. 347-355 ◽  
Author(s):  
A. M. Benjamin ◽  
J. H. Quastel

High concentrations (105 μequiv./ml) of potassium ions in the incubation medium bring about reduced uptakes of L-glutamate, L-aspartate, and glycine but not of L-glutamine into rat brain cortex slices incubated aerobically in a physiological saline – glucose medium. The reductions are suppressed by acetylcholine (20 μM – 2 mM) in presence of eserine (0.1 mM) and not by tetrodotoxin (3 μM). The effect of acetylcholine is calcium dependent. It is diminished by atropine but not by d-tubocurarine (1 mM). Protoveratrine (5 μM) inhibition of amino acid uptake is not affected by acetylcholine but it is suppressed by tetrodotoxin. Acetylcholine and tetrodotoxin act independently of each other. Acetylcholine suppresses the potassium-evoked release of endogenous glutamate, aspartate, or glycine from incubated rat brain cortex slices. Its action on release is calcium dependent. Acetylcholine also suppresses the potassium-induced release of amino acids from rat brain cortex slices that have been previously incubated with 2 mM sodium L-glutamate or 2 mM sodium L-aspartate.It is suggested that increased cell concentrations of calcium ions, owing to high concentrations of potassium ions in the incubation medium, cause an increased glial permeability to sodium ions, with a resultant diminution of the sodium gradient. This diminution is considered to be responsible for the diminished concentrative uptake of L-glutamate, L-aspartate, or glycine, and the increased release of these amino acids. Acetylcholine suppresses the permeability change due to high concentrations of potassium ions and reverses the changed sodium gradient and the consequent change in amino acid uptake and release. It would seem that accumulation of acetylcholine in the intracellular spaces may affect glia, as well as neurons, modifying permeability to sodium ions and to various amino acids now assuming importance as possible transmitters.


1961 ◽  
Vol 39 (12) ◽  
pp. 1811-1827 ◽  
Author(s):  
A. Vardanis ◽  
J. H. Quastel

The effects of tetraethyl lead, tetraethyl tin, triethyl lead, and triethyl tin on the metabolism of rat brain cortex slices have been studied. Tetraethyl lead and tetraethyl tin inhibit the active transport of amino acids into rat brain cortex slices at concentrations and under conditions that show no effect on the glucose metabolism of the slices. Tetraethyl lead and tetraethyl tin inhibit the oxidation of L-glutamate by rat brain slices. This effect can be accounted for on the basis of the inhibitory action of these two substances on the transport of the amino acid into the brain tissue.Tetraethyl lead and tetraethyl tin abolish, at low concentrations, potassium-stimulated brain slice respiration in presence of glucose, having little or no effect on unstimulated brain slice respiration. However, the respiration of rat brain cortex slices previously treated with phospholipase A is highly sensitive to tetraethyl lead.The inhibitory effects of the two tetraethyl compounds show differences from those of their triethyl derivatives indicating that the effects of the former substances are not due to admixture with, or conversion to, the latter substances.The brain slices of rats poisoned with either tetraethyl lead or tetraethyl tin are unable to effect the active transport of amino acids. The appearance of this biochemical abnormality coincides with the manifestation of neuropathological symptoms.The mode of action of tetraethyl lead and of tetraethyl tin on brain metabolism in vitro is discussed. It is suggested that they may act on phospholipid groups concerned with amino acid and cation transport at the cell membrane.


1975 ◽  
Vol 53 (9) ◽  
pp. 975-988 ◽  
Author(s):  
Danny P. Singh ◽  
Hérb. B. LéJohn

Transport of amino acids in the water-mould Achlya is an energy-dependent process. Based on competition kinetics and studies involving the influence of pH and temperature on the initial transport rates, it was concluded that the 20 amino acids (L-isomers) commonly found in proteins were transported by more than one, possibly nine, uptake systems. This is similar to the pattern elucidated for some bacteria but unlike those uncovered for all fungi studied to date. The nine different transport systems elucidated are: (i) methionine, (ii) cysteine, (iii) proline, (iv) serine–threonine, (v) aspartic and glutamic acids, (vi) glutamine and asparagine, (vii) glycine and alanine, (viii) histidine, lysine, and arginine, and (ix) phenylalanine–tyrosine–tryptophan and leucine–isoleucine–valine as two overlapping groups. Transport of all of these amino acids was inhibited by azide, cyanide, and its derivatives and 2,4-dinitrophenol. These agents normally interfere with metabolism at the level of the electron transport chain and oxidative phosphorylation. Osmotic shock treatment of the cells released, into the shock fluid, a glycopeptide that binds calcium as well as tryptophan but no other amino acid. The shocked cells are incapable of concentrating amino acids, but remain viable and reacquire this capacity when the glycopeptide is resynthesized.Calcium played more than a secondary role in the transport of the amino acids. When bound to the membrane-localized glycopeptide, it permits concentrative transport to take place. However, excess calcium can inhibit transport which can be overcome by chelating with citrate. Calculations show that the concentration of free citrate is most important. At low citrate concentrations (less than 1 mM) in the absence of exogenously supplied calcium, enhancement of amino acid transport occurs. At high concentrations (greater than 5 mM), citrate inhibits but this effect can be reversed by titrating with calcium. Evidently, the glycopeptide acts as a calcium sink to regulate the concentration of calcium made available to the cell for its membrane activities.N6-(Δ2-isopentenyl) adenine (a plant growth 'hormone') and analogues mimic the inhibitory effect of citrate and bind to the glycopeptide as well. Replot data for citrate and N6-(Δ2-isopentyl) adenine inhibition indicate that both agents have no more than one binding constant. These results implicate calcium, glycopeptide, and energy-dependent transport of solutes in some, as yet undefinable, way.


1995 ◽  
Vol 268 (6) ◽  
pp. C1321-C1331 ◽  
Author(s):  
A. J. Moe

Normal fetal growth and development depend on a continuous supply of amino acids from the mother to the fetus. The placenta is responsible for the transfer of amino acids between the two circulations. The human placenta is hemomonochorial, meaning that the maternal and fetal circulations are separated by a single layer of polarized epithelium called the syncytiotrophoblast, which is in direct contact with maternal blood. Transport proteins located in the microvillous and basal membranes of the syncytiotrophoblast are the principal mechanism for transfer from maternal blood to fetal blood. Knowledge of the function and regulation of syncytiotrophoblast amino acid transporters is of great importance in understanding the mechanism of placental transport and potentially improving fetal and newborn outcomes. The development of methods for the isolation of microvillous and basal membrane vesicles from human placenta over the past two decades has contributed greatly to this understanding. Now a primary cultured trophoblast model is available to study amino acid transport and regulation as the cells differentiate. The types of amino acid transporters and their distribution between the syncytiotrophoblast microvillous and basal membranes are somewhat unique compared with other polarized epithelia. These differences may reflect the unusual circumstance of this epithelium that is exposed to blood on both sides. The current state of knowledge as to the types of transport systems present in syncytiotrophoblast, their regulation, and the effects of maternal consumption of drugs on transport are discussed.


2005 ◽  
Vol 288 (2) ◽  
pp. C290-C303 ◽  
Author(s):  
Tiziano Verri ◽  
Cinzia Dimitri ◽  
Sonia Treglia ◽  
Fabio Storelli ◽  
Stefania De Micheli ◽  
...  

Information regarding cationic amino acid transport systems in thyroid is limited to Northern blot detection of y+LAT1 mRNA in the mouse. This study investigated cationic amino acid transport in PC cell line clone 3 (PC Cl3 cells), a thyroid follicular cell line derived from a normal Fisher rat retaining many features of normal differentiated follicular thyroid cells. We provide evidence that in PC Cl3 cells plasmalemmal transport of cationic amino acids is Na+ independent and occurs, besides diffusion, with the contribution of high-affinity, carrier-mediated processes. Carrier-mediated transport is via y+, y+L, and b0,+ systems, as assessed by l-arginine uptake and kinetics, inhibition of l-arginine transport by N-ethylmaleimide and neutral amino acids, and l-cystine transport studies. y+L and y+ systems account for the highest transport rate (with y+L > y+) and b0,+ for a residual fraction of the transport. Uptake data correlate to expression of the genes encoding for CAT-1, CAT-2B, 4F2hc, y+LAT1, y+LAT2, rBAT, and b0,+AT, an expression profile that is also shown by the rat thyroid gland. In PC Cl3 cells cationic amino acid uptake is under TSH and/or cAMP control (with transport increasing with increasing TSH concentration), and upregulation of CAT-1, CAT-2B, 4F2hc/y+LAT1, and rBAT/b0,+AT occurs at the mRNA level under TSH stimulation. Our results provide the first description of an expression pattern of cationic amino acid transport systems in thyroid cells. Furthermore, we provide evidence that extracellular l-arginine is a crucial requirement for normal PC Cl3 cell growth and that long-term l-arginine deprivation negatively influences CAT-2B expression, as it correlates to reduction of CAT-2B mRNA levels.


1963 ◽  
Vol 41 (2) ◽  
pp. 435-454 ◽  
Author(s):  
O. Gonda ◽  
J. H. Quastel

The effects of acetylsalicylate and of 2,4-dinitrophenol on the metabolism and transport processes of rat brain cortex slices incubated at 37° in glucose–Ringer media under various conditions have been investigated. The following processes are suppressed by acetylsalicylate (5 mM) or dinitrophenol (0.05 mM) to a much greater extent in media containing 105 mM KCl or 10 mM NH4Cl (which stimulate brain respiration) than in normal media:(a) respiration;(b) incorporation of phosphate into ATP and ADP;(c) conversion of creatine to phosphocreatine;(d) uptake of glutamate or of creatine from the medium to the tissue.The two drugs increase the leakage of amino acids from rat brain cortex slices into the medium, the effects being greatest in the presence of 105 mM KCl or 5 mM glutamate or in the absence of glucose. They change the yields of labelled amino acids from labelled glucose or labelled glutamate.Labelled glutamate is converted to labelled aspartate, γ-aminobutyrate and glutamine in rat brain cortex slices, the addition of glucose bringing about increased yields of glutamine and γ-aminobutyrate and a decreased yield of aspartate. The formation of labelled glutamine from either labelled glutamate or from labelled glucose is suppressed by acetylsalicylate or dinitrophenol, the effects being greater in the presence of 105 mM KCl or 10 mM NH4Cl.The increased sensitivity of the stimulated tissue metabolism to the drugs, in the presence of high K+, or of NH4+or of glutamate, is probably explained by the fact that there is a fall, under these conditions, in the tissue phosphocreatine level. There is, therefore, less reserve phosphocreatine to maintain the level of ATP when neuronal oxidative phosphorylation is suppressed by the addition of acetylsalicylate or of dinitrophenol.


1989 ◽  
Vol 257 (3) ◽  
pp. R494-R500 ◽  
Author(s):  
B. Giordana ◽  
V. F. Sacchi ◽  
P. Parenti ◽  
G. M. Hanozet

Experiments with intestinal brush-border membrane vesicles from lepidopteran larvae disclosed the occurrence of unique cotransporter proteins that use K+ as the driver cation for the transmembrane transfer of amino acids across the luminal border of midgut enterocytes. Six apical membrane amino acid transport systems have been identified. These systems are 1) a neutral amino acid transporter with a broad spectrum of interactions with most neutral amino acids, which is highly concentrative, strongly K+- and electrical potential-dependent, poorly stereospecific, and recognizes histidine, but not proline, glycine, or alpha-(methylamino)isobutyric acid (MeAIB); 2) a specific system for L-proline; 3) a specific system for glycine with a higher affinity for Na+ than for K+; 4) a specific system for L-lysine, which is dependent on membrane potential, is highly sensitive to external K+, and does not interact with L-arginine or neutral amino acids; 5) a specific K+-dependent process for glutamic acid, which does not recognize aspartic acid; and last, 6) an apparently unique K+- driven mechanism for D-alanine, which is potential-dependent and strongly stereospecific.


Sign in / Sign up

Export Citation Format

Share Document