DIRECT GAS CHROMATOGRAPHIC FRACTIONATION OF MIXED NEUTRAL LIPIDS OF NATURAL ORIGIN

1964 ◽  
Vol 42 (3) ◽  
pp. 419-430 ◽  
Author(s):  
A. Kuksis

The experimental conditions previously developed for the gas chromatographic separation of natural triglyceride mixtures are also satisfactory for a direct gas chromatographic fractionation of mixed neutral lipids. This type of analysis has been shown to be readily applicable to the mixtures of free sterol, steryl ester, and triglyceride found in lymph, blood plasma, and certain molecular distillates of corn oil. The separations are based primarily on the carbon number or molecular weight of the material and are effective because of the virtual absence of short chain triglycerides from these samples. The results are essentially quantitative and can be obtained within an hour on 10 to 50 μg of total lipid. For these analyses a solvent-refined lipid extract is usually satisfactory.

2007 ◽  
Vol 90 (5) ◽  
pp. 1346-1353 ◽  
Author(s):  
Diego L García-González ◽  
María Viera-Macías ◽  
Ramón Aparicio-Ruiz ◽  
Maria T Morales ◽  
Ramón Aparicio

Abstract The difference between theoretical and empirical triglyceride content is a powerful tool to detect the presence of any vegetable oil in olive oil. The current drawback of the method is the separation between equivalent carbon number ECN42 compounds, which affects the reliability of the method and, hence, its cutoff limit. The determination of the triglyceride profile by liquid chromatography using propionitrile as the mobile phase has recently been proposed to improve their quantification, together with a mathematical algorithm whose binary response determines the presence or absence of hazelnut oil. Twenty-one laboratories from 9 countries participated in an interlaboratory study to evaluate the performance characteristics of the whole analytical method. Participants analyzed 12 samples in duplicate, split into 3 intercomparison studies. Statistically significant differences due to the experimental conditions were found in some laboratories, which were detected as outliers by use of Cochran's and Grubbs' tests. The relative standard deviations (RSD) for repeatability and reproducibility were determined following the AOAC Guidelines for Collaborative Studies. The analytical properties of the method were determined by means of the sensitivity (0.86), selectivity (0.94), and reliability (72) for a cutoff limit of 8 (probability 94).


1977 ◽  
Vol 17 (03) ◽  
pp. 193-200 ◽  
Author(s):  
M.C. Puerto ◽  
W.W. Gale

Abstract Economic constraints are such that it is unlikely a pure surfactant will be used for major enhanced oil recovery projects. However, it is possible to manufacture at competitive prices classes of syntheic and natural petroleum sulfonates that have fairly narrow molecular-weight distributions. Under some reservoir conditions, one of these narrow-distribution sulfonates may serve quite well as the basic component of a surfactant flood, however, in many instances a mixture of two or more of these may be required. Since evaluation of a significant subset of "all possible combinations" is a formidable undertaking screening techniques must be established that can reduce the number of laboratory core floods required. It is well known that interfacial tension plays a dominant role in surfactant flooding. It has recently been shown that minimal interfacial tensions occur at optimal salinity, Cphi, where the solubilization parameters VO/Vs and Vw/Vs are equal. Additionally, it has been shown that interracial tensions are inversely proportional to the magnitude of the solubilization parameters. This paper demonstrates that optimal salinity and solubilization parameters for any mixture of orthoxylene sulfonates can be estimated by summation of mole-fraction-weighted component properties. Those properties, which could not be properties. Those properties, which could not be measured directly, were obtained by least-squares regression on mixture data. Moreover, for surfactants of known carbon number distributions, equations that are linear in mole fractions of components and logarithmic in alkyl carbon number were found to be excellent estimators of both Cphi and solubilization parameters evaluated at Cphi. parameters evaluated at Cphi. Optimal salinity and associated solubilization parameters were measured using constant weight parameters were measured using constant weight fractions of alcohol cosolvents and mixtures of seven products with narrow molecular weight distributions. The average alkyl carbon number of these products varied from about 8 to 19. Alkyl chain lengths of individual surfactant chemical species ranged from 6 to 24 carbon atoms. Introduction Optimal salinity and the amounts of oil and water contained in a microemulsion have been shown to play important roles in obtaining low interfacial tensions and high oil recoveries. Since economics of enhanced oil recovery projects demand use of inexpensive surfactants, broad-distribution products likely will be chosen. Knowledge of how to estimate optimal salinity and oil-water contents of microemulsions prepared from such products would reduce time involved in laboratory screening procedures. This paper presents a method for procedures. This paper presents a method for obtaining such estimates that should prove useful for all types of surfactant mixtures that involve homologous series. The basic concept used is that a given property of a mixture of components (Yi) is related to the sum of products of mole fraction of components in the mixture (Xij) and the "mixing value" of the property in question for that component (Y'j). In property in question for that component (Y'j). In other words, (1) This approach is similar, for example, to the pseudocritical method used by Kay to calculate pseudocritical method used by Kay to calculate gas deviation factors at high pressures. The properties of interest in this paper are optimal properties of interest in this paper are optimal salinity and solubilization parameters, Vo/Vs, and Vw/Vs, at optimal salinity. Two separate approaches were developed that depended on the degree of detail of the available surfactant-composition data. In the first approach, only average molecular weights of several surfactant products were assumed known. Optimal salinity and products were assumed known. Optimal salinity and solubilization parameters could be measured for some, but not all, of the products. Regression on mixture data was used to estimate these quantities for the remainder of the products. Those properties, either measured experimentally or estimated from mixture data, are referred to as surfactant product contributions since they can be used as mixing values of the property in question in Eq. 1 or Eq. 2. SPEJ P. 193


Author(s):  
Danail Georgiev ◽  
Georgi Dobrev ◽  
Stefan Shilev

Aim: To characterize the enzyme phytase produced by phytase-active Candida melibiosica 2491 for subsecuent use in feed industry. Methods: C. melibiosica 2491 had been selected among 118 strains as the most productive strain of phytase. In present study, the enzyme was first purified through electrophoresis grade in four steps: precipitation with organic solvent, ultrafiltration, gel chromatography and Denaturing gel electrophoresis (SDS–PAGE). Results: Higher levels of purification were obtained using ethanol. The gel chromatography showed an elution maximum at 11-12 fractions that characterize the corresponding one as high-molecular weight phytase. The purification level was found to be 19.5 folds with specific enzyme activity of 2.75 U/mg protein and yield – 19.64 %. Furthermore, the molecular weight of purified phytase was estimated to 35.9 кDa, with optimum of pH – at 4.5 and optimum of temperature at 55 °C. Maximum phytase activity in case of whole cells was found at 50 оС, which was less than using the purified enzyme. It was activated through 5 mM of Ba2+, 10 mM of Mn2+ and K+ ions. Total inhibition effect was achieved from Fe3+, Hg2+ and Zn2+. Copper ions (Cu2+) in concentrations at 5 mM conducted to partial inhibition effect, but at 10 mM the phytase activity was equal to zero. Low inhibition effect was determined in case of cobalt ions (Co2+) at concentrations of 10 mM. The phytase displayed broad sub­strate specificity and the Km for phytate was estimated to be 0.21 mM under the experimental conditions, while Vmax – 19.9 µМ/ml. Conclusion: Although the phytase produced by C. melibiosica 2491 is a promising enzyme to be used successfully in feed production, more investigations are needed to ensure its advantages.


2020 ◽  
Author(s):  
Nataliia Dolgopiatova ◽  
Yuliya Kuchina ◽  
Tatiana Dyakina ◽  
Tatiana Volkova

The effect of alkaline treatment of shrimp chitin on the molecular weight, the degree of deacetylation and degree of crystallinity of the resulting chitosan is studied. The viscosity of chitosan solutions from repeatedly deacetylated chitin is studied. It is shown that repeated treatment of chitin/chitosan with alkali causes the destruction of polysaccharide macromolecules. After four-time deacetylation and one-time deacetylation of chitin/chitosan for four hours, the molecular weight of the polysaccharide decreases by ten times. The maximum degree of chitosan deacetylation under experimental conditions was 92.0 -92.5%. The diffractograms of chitin and chitosan from the Northern shrimp are of the form typical for samples containing an amorphous phase in addition to a crystalline phase. The degree of crystallinity of chitin from Northern shrimp was 40.8%, of chitosan samples after one-, two-, and three-time deacetylation was 62-65%. For a sample of chitosan obtained after four-time deacetylation, recrystallization, and drying in a freeze dryer, the degree of crystallinity is close to the degree of crystallinity of shrimp chitin. The investigated acetic acid chitosan solutions with a concentration of 5% (wt.) and the chitosan molecular weight of 250, 160 and 130 kDa in their rheological properties are liquid-like non-Newtonian systems, their viscosity decreasing with increasing shear stress. After four-time deacetylation of chitin, the viscosity of chitosan solutions practically does not change with increasing shear stress, which apparently can be due to a significant decrease in the molecular weight of chitosan under these conditions.


Author(s):  
Sijia Zhong ◽  
Jianfeng Shi ◽  
Weican Guo ◽  
Jinyang Zheng

Polyethylene (PE) pipe material may degrade into lower carbon number volatiles quickly during the electrofusion welding process when the welding temperature rises up to more than about 370°C. Meanwhile, PE may also degrade into lower molecular weight (MW) polymer when subject to a lower temperature. As a result, the allowable temperature during electrofusion welding is uncertain. In this paper, a typical PE100 material was chosen to conduct thermogravimetic analysis (TGA) and Gel permeation chromatography (GPC) test. The thermal degradation behavior of PE100 was investigated in Dynamic and isothermal mode. And the composition of the thermal degradation residue was determined through MW and molecular weight distribution (MWD) measurements of the residue. Based on the experimental results, the initial temperature of thermal degradation with volatilization was derived and the thermal degradation process was studied in detail. To limit the thermal degradation degree of PE in a required range in thermal welding process, the preliminary allowable welding temperature for typical commercial PE100 material was determined. In addition, some regular information was obtained, which could promote the ultimate determination of the allowable welding temperature.


NANO ◽  
2008 ◽  
Vol 03 (05) ◽  
pp. 317-322 ◽  
Author(s):  
ZHAOHUI LUO ◽  
KEIKO KATAYAMA-HIRAYAMA ◽  
KIMIAKI HIRAYAMA ◽  
TETSUYA AKITSU ◽  
HIDEHIRO KANEKO

Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (PAH) that is found in water systems worldwide. It is harmful to living organisms, even when taken in very small amounts. The photocatalytic degradation of pyrene in porous Pt / TiO 2– SiO 2 photocatalyst (PPtPC) suspension under UV irradiation was investigated in this study. PPtPC was prepared by a simple heat treatment of the compacted powder mixtures of anatase TiO 2 and amorphous SiO 2 with camphor as a pore directing template, followed by coating platinum by the dip-coating method. X-ray diffraction (XRD), scanning electron microscopy (SEM) with an integrated energy-dispersive analysis of the X-ray (EDX) system, and Brunauer–Emmett–Teller (BET) were used to characterize PPtPC. The degradation kinetics of pyrene in different experimental conditions, such as initial concentration of pyrene, oxygen concentrations, pH, and temperature, were investigated. The durability of PPtPC was also tested. The results indicate that the structure of TiO 2 in PPtPC is anatase. The aggregated size of PPtPC is in the range of 10–100 μm, the mean pore diameter is 3 nm, and the BET surface area is 109 m2 g-1. The photocatalytic degradation process of pyrene follows pseudo-first-order kinetics. The rate constants increase as the initial concentration of pyrene and pH decrease. Higher temperature slightly enhances the rate constant. The dissolved oxygen in the photocatalytic degradation process is not as important as in the photolysis process. The recovered PPtPC still shows high photoactivity. This work suggests that PPtPC offers a promising method for high molecular weight PAH removal.


1977 ◽  
Vol 32 (5-6) ◽  
pp. 384-391 ◽  
Author(s):  
Hans Craubner ◽  
Friederike Koenig

Abstract The molecular weight of a thylakoid membrane polypeptide with the apparent molecular weight 11 000 was determined by measurement of the sedimentation velocity, the diffusion and the ef­fective partial specific volume. The molecular weight was found to be 6300 and that of the poly-peptide-dodecyl sulphate micelle was found to be 11 200. The frictional ratio was 1.35. In ad­dition, we determined the binding of dodecyl sulphate onto the polypeptide by equilibrium dialysis. We found that 1 g polypeptide binds 0.77 g sodium dodecyl sulphate which corresponds to 17 molecules dodecyl sulphate bound per polypeptide chain. In the absence of dodecyl sulphate the polypeptide aggregates. The molecular weights of the aggregates are in 0.01 м sodium phosphate buffer pH 7.2 150 000 and in a 1 :1 mixture of 0.01 м phosphate buffer and 96% ethanol 365 000. The frictional ratios were 1.07 and 1.16 respectively which points at a spherical shape. The experimental conditions for the determination of the dodecyl sulphate binding were critically scrutinised.


2003 ◽  
Vol 57 (9-10) ◽  
pp. 639-644 ◽  
Author(s):  
M. Kállai ◽  
V. Máté ◽  
J. Balla

1976 ◽  
Vol 70 (3) ◽  
pp. 608-621 ◽  
Author(s):  
N Simionescu ◽  
M Simionescu

Gallotannin, consisting mainly of low molecular weight esters such as penta- and hexagalloylglucoses (commercially available as tannic acid produced from Turkish nutgall), can be used for increasing and diversifying tissue contrast in electron microscopy. When applied on tissue specimens previously fixed by conventional methods (aldehydes and OsO4), the low molecular weight galloylglucoses (LMGG) penetrate satisfactorily the cells and induce general high contrast with fine delineation of extra- and intracellular structures, especially membranes. In some features, additional details of their intimate configuration are revealed. Various experimental conditions tested indicate that the LMGG display a complex effect on fixed tissues: they act primarily as a mordant between osmium-treated structures and lead, and concomitantly stabilize some tissue components against extraction incurred during dehydration and subsequent processing. Experiments with aldehyde blocking reagents (sodium borohydride and glycine) suggested that the LMGG mordanting effect is not dependent on residual aldehydes groups in tissues.


Sign in / Sign up

Export Citation Format

Share Document