An Atypical Substrate–inhibitor–Rate Relationship for the Action of Antimycin A on the Succinate–Ferricyanide Reductase Activity of Beef Heart Electron Transfer Particles

1971 ◽  
Vol 49 (8) ◽  
pp. 936-940 ◽  
Author(s):  
G. L. Perry ◽  
G. R. Williams

The degree of inhibition of the succinate–ferricyanide reductase activity of beef heart electron transfer particles by antimycin A is negligible at low succinate concentrations (< 1 mM) but increases to about 40% at saturating concentrations of succinate. This behavior is explained on the basis of a random order mechanism for the primary dehydrogenase with alternative routes from the monosubstrate complexes, only one of which is sensitive to antimycin.

1961 ◽  
Vol 39 (5) ◽  
pp. 1131-1148 ◽  
Author(s):  
G. A. White ◽  
G. A. Ledingham

Electron transport to oxygen in a particulate fraction from uredospores of Puccinia graminis var. tritici occurs through a series of carriers similar to those of other fungi and higher plants.Experiments with various enzyme inhibitors and measurements of the oxygen affinity of respiration have shown that cytochrome oxidase mediates the final step in the sequence of electron transfer. The enzyme was localized in a fraction sedimenting at 20,000 g and was typically inhibited by cyanide, azide, and CO-dark, the latter inhibition being light-reversible. Other enzymes present were succinic-cytochrome c reductase, DPNH- and TPNH-cytochrome c reductase, dye reductase, malic dehydrogenase, isocitric dehydrogenase, and glycerol-1-phosphate dehydrogenase. Particulates failed to oxidize DPNH unless an electron acceptor was added. An increase in the activity of several of the respiratory enzymes was noted upon spore germination.Succinic-cytochrome c reductase was only partially sensitive to Antimycin A, HOQNO, and the naphthoquinone, SN 5949. These compounds markedly inhibited a labile portion of the DPNH-cytochrome c reductase activity but had little effect on the stable activity remaining in aged particles. Menadione, but not vitamin K1, stimulated electron transfer. Antimycin A and SN 5949 virtually blocked spore respiration suggesting a "Slater-type" factor in the intact pathway of oxidation.


2002 ◽  
Vol 367 (1) ◽  
pp. 77-85 ◽  
Author(s):  
D. Shyamali WIMALASENA ◽  
Samantha P. JAYATILLAKE ◽  
Donovan C. HAINES ◽  
Kandatege WIMALASENA

A series of fumarate analogues has been used to explore the molecular mechanism of the activation of dopamine β-mono-oxygenase by fumarate. Mesaconic acid (MA) and trans-glutaconic acid (TGA) both activate the enzyme at low concentrations, similar to fumarate. However, unlike fumarate, TGA and MA interact effectively with the oxidized enzyme to inhibit it at concentrations of 1—5mM. Monoethylfumarate (EFum) does not activate the enzyme, but inhibits it. In contrast with TGA and MA, however, EFum inhibits the enzyme by interacting with the reduced form. The saturated dicarboxylic acid analogues, the geometric isomer and the diamide of fumaric acid do not either activate or inhibit the enzyme. The phenylethylamine—fumarate conjugate, N-(2-phenylethyl)fumaramide (PEA-Fum), is an 600-fold more potent inhibitor than EFum and behaves as a bi-substrate inhibitor for the reduced enzyme. The amide of PEA-Fum behaves similarly, but with an inhibition potency 20-fold less than that of PEA-Fum. The phenylethylamine conjugates of saturated or geometric isomers of fumarate do not inhibit the enzyme. Based on these findings and on steady-state kinetic analysis, an electrostatic model involving an interaction between the amine group of the enzyme-bound substrate and a carboxylate group of fumarate is proposed to account for enzyme activation by fumarate. Furthermore, in light of the recently proposed model for the similar copper enzyme, peptidylglycine α-hydroxylating mono-oxygenase, the above electrostatic model suggests that fumarate may also play a role in efficient electron transfer between the active-site copper centres of dopamine β-mono-oxygenase.


1992 ◽  
Vol 47 (11-12) ◽  
pp. 929-931 ◽  
Author(s):  
Antonio del Castillo-Olivares ◽  
Javier Márquez ◽  
Ignacio Núñez de Castro ◽  
Miguel Angel Medina

Ehrlich cell plasma membrane vesicles have a ferricyanide reductase activity that shows two phases. These two phases were kinetically characterized. Evidence is presented for a differential effect of trypsin on both phases


Sign in / Sign up

Export Citation Format

Share Document