Purification and characterization of tonin

1976 ◽  
Vol 54 (9) ◽  
pp. 788-795 ◽  
Author(s):  
S. Demassieux ◽  
R. Boucher ◽  
C. Grisé ◽  
J. Genest

Tonin was purified from rat submaxillary glands by differential centrifugation, ammonium sulphate precipitation, gel filtration on Sephadex G150, and by ion-exchange chromatography on DEAE-cellulose, phospho-cellulose, SP-Sephadex C25, and SP-Sephadex C50. Purified tonin was shown to be homogeneous by analytical electrophoresis and by analytical ultracentrifugation analysis. Purified tonin was very stable when stored in buffers of low pH values or when incubated at high temperatures in neutral solutions. The molecular weight estimated by sedimentation equilibrium was 28 700. The pH optimum was near 6.8 in a 0.1 M potassium phosphate buffer. The Michaelis–Menten constant for tonin using angiotensin I as substrate was about 4 × 10−5 M. Tonin activity was strongly inhibited by plasma. Kinetic studies using angiotensin I as substrate showed that the inhibition of tonin by plasma was of the non-competitive type.

1987 ◽  
Vol 65 (10) ◽  
pp. 899-908 ◽  
Author(s):  
F. Moranelli ◽  
M. Yaguchi ◽  
G. B. Calleja ◽  
A. Nasim

The extracellular α-amylase activity of the yeast Schwanniomyces alluvius has been purified by anion-exchange chromatography on DEAE-cellulose and gel-filtration chromatography on Sephadex G-100. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS–PAGE) and N-terminal amino acid analysis of the purified sample indicated that the enzyme preparation was homogeneous. The enzyme is a glycoprotein having a molecular mass of 52 kilodaltons (kDa) estimated by SDS–PAGE and 39 kDa by gel filtration on Sephadex G-100. Chromatofocusing shows that it is an acidic protein. It is resistant to trypsin but sensitive to proteinase K. Its activity is inhibited by the divalent cation chelators EDTA and EGTA and it is insensitive to sulfhydryl-blocking agents. Exogenous divalent cations are inhibitory as are high concentrations of monovalent salts. The enzyme has a pH optimum between 3.75 and 5.5 and displays maximum stability in the pH range of 4.0–7.0. Under the conditions tested, the activity is maximal between 45 and 50 °C and is very thermolabile. Analysis of its amino acid composition supports its acidic nature.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kamal Uddin Zaidi ◽  
Ayesha S. Ali ◽  
Sharique A. Ali

Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications.


1974 ◽  
Vol 137 (2) ◽  
pp. 363-371 ◽  
Author(s):  
N. C. Phillips ◽  
D. Robinson ◽  
B. G. Winchester ◽  
R. D. Jolly

Normal calf α-mannosidase activity exists in at least three forms separable by chromatography on DEAE-cellulose and by starch-gel electrophoresis. Two components, A and B, have optimum activity between pH3.75 and 4.75, but component C has an optimum of pH6.6. Components A and B are virtually absent from the tissues of a calf with mannosidosis and the residual activity is due to component C. The acidic and neutral forms of α-mannosidase differ in their molecular weights and sensitivity to EDTA, Zn2+, Co2+ and Mn2+. An acidic α-mannosidase component (pH optimum 4.0) accounts for most of the activity in normal plasma but it is absent from the plasma of a calf with mannosidosis. Although the acidic α-mannosidase component is probably related to tissue components A and B, it can be distinguished from them by ion-exchange chromatography and gel filtration. The optimum pH of the low residual activity in the plasma from a calf with mannosidosis is pH5.5–5.75. The results support the hypothesis that Angus-cattle mannosidosis is a storage disease caused by a deficiency of lysosomal acidic α-mannosidase activity.


1989 ◽  
Vol 262 (2) ◽  
pp. 409-416 ◽  
Author(s):  
G A Saravani ◽  
D A Cowan ◽  
R M Daniel ◽  
H W Morgan

An extracellular alkaline serine proteinase from Thermus strain ToK3 was isolated and purified to homogeneity by (NH4)2SO4 precipitation followed by ion-exchange chromatography on DEAE-cellulose and QAE-Sephadex, affinity chromatography on N alpha-benzyloxycarbonyl-D-phenylalanyl-triethylenetetraminyl-Sepha rose 4B and gel-filtration chromatography on Sephadex G-75. The purified enzyme had a pI of 8.9 and an Mr determined by gel-permeation chromatography of 25,000. The specific activity was about 37,700 proteolytic units/mg with casein as substrate, and the pH optimum was 9.5. Proteolytic activity was inhibited by low concentrations of di-isopropyl phosphorofluoridate and phenylmethanesulphonyl fluoride, but was unaffected by EDTA, EGTA, o-phenanthroline, N-ethyl-5-phenylisoxazolium-3′-sulphonate, N alpha-p-tosyl-L-phenylalanylchloromethane, N alpha-p-tosyl-L-lysylchloromethane, trypsin inhibitors and pepstatin A. The enzyme contained approx. 10% carbohydrate and four disulphide bonds. No Ca2+, Zn2+ or free thiol groups were detected. It hydrolysed several native and dye-linked proteins and synthetic chromogenic peptides and esters. The enzyme was very thermostable (half-life values were 840 min at 80 degrees C, 45 min at 90 degrees C and 5 min at 100 degrees C). The enzyme was unstable at low ionic strength: after 60 min at 75 degrees C in 0.1 M-Tris/acetate buffer, pH 8, only 20% activity remained, compared with no loss in 0.1 M-Tris/acetate buffer, pH 8, containing 0.4 M-NaCl.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michelle Cutajar ◽  
Fabrizio Andriulo ◽  
Megan R. Thomsett ◽  
Jonathan C. Moore ◽  
Benoit Couturaud ◽  
...  

AbstractThere is currently a pressing need for the development of novel bioinspired consolidants for waterlogged, archaeological wood. Bioinspired materials possess many advantages, such as biocompatibility and sustainability, which makes them ideal to use in this capacity. Based on this, a polyhydroxylated monomer was synthesised from α-pinene, a sustainable terpene feedstock derived from pine trees, and used to prepare a low molar mass polymer TPA5 through free radical polymerisation. This polymer was extensively characterised by NMR spectroscopy (chemical composition) and molecular hydrodynamics, primarily using analytical ultracentrifugation reinforced by gel filtration chromatography and viscometry, in order to investigate whether it would be suitable for wood consolidation purposes. Sedimentation equilibrium indicated a weight average molar mass Mw of (4.3 ± 0.2) kDa, with minimal concentration dependence. Further analysis with MULTISIG revealed a broad distribution of molar masses and this heterogeneity was further confirmed by sedimentation velocity. Conformation analyses with the Perrin P and viscosity increment ν universal hydrodynamic parameters indicated that the polymer had an elongated shape, with both factors giving consistent results and a consensus axial ratio of ~ 4.5. These collective properties—hydrogen bonding potential enhanced by an elongated shape, together with a small injectable molar mass—suggest this polymer is worthy of further consideration as a potential consolidant.


1980 ◽  
Vol 187 (3) ◽  
pp. 647-653 ◽  
Author(s):  
K Arakawa ◽  
M Yuki ◽  
M Ikeda

Tryptensin, a vasopressor substance generated from human plasma protein fraction IV-4 by trypsin, has been isolated and the amino acid composition analysed. The procedures used for the isolation were: (a) adsorption of the formed tryptensin on Dowex 50W (X2; NH4+ form); (b) gel filtration through Sephadex G-25; (c) cation-exchange chromatography on CM-cellulose; (d) anion-exchange chromatography on DEAE-cellulose; (e) re-chromatography on CM-cellulose; (f) gel filtration on Bio-Gel P-2; (g) partition chromatography on high-pressure liquid chromatography. The homogeneity of the isolated tryptensin was confirmed by thin-layer chromatography and thin-layer electrophoresis. The amino acid analysis of the hydrolysate suggested the following proportional composition: Asp, 1; Val, 1; Ile, 1; Tyr, 1; Phe, 1; His, 1; Arg, 1; Pro, 1. This composition is identical with that of human angiotensin.


1984 ◽  
Vol 4 (6) ◽  
pp. 1003-1012
Author(s):  
R L Nelson ◽  
P E Branton

Tyrosine phosphorylation catalyzed by a unique class of protein kinases is an important process in both normal cell proliferation and oncogenic transformation. In this study, phosphoprotein phosphatases specific for the dephosphorylation of phosphotyrosine residues were partially purified from secondary chicken embryo fibroblasts, using 32P-labeled immunoglobulin G phosphorylated by pp60src as substrate. Crude cell extracts contained ca. 70% of the activity in the soluble form and ca. 30% associated with a crude membrane fraction. The soluble activity was purified by using DEAE-cellulose and carboxymethyl cellulose column chromatography and gel filtration, and at least three enzyme species of apparent Mr 55,000 (pTPI), 50,000 (pTPII), and 95,000 (pTPIII)--comprising ca. 20, 45, and 35%, respectively, of the total activity--were resolved. All three enzymes possessed somewhat similar properties. They had a pH optimum of about 7.4, they were inhibited by Zn2+, vanadate, ATP, and ADP, and they were unaffected by divalent metal cations, EDTA, and F- under standard assay conditions employing a physiological ionic strength. These properties suggest that they represent a class of enzymes distinct from well-known phosphoseryl-phosphothreonyl-protein phosphatases and that dephosphorylation of phosphotyrosine-containing proteins may be carried out by a unique family of phosphoprotein phosphatases. Transformation by Rous sarcoma virus resulted in a small increase in phosphotyrosyl-protein phosphatase activity.


1972 ◽  
Vol 130 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Colin H. Self ◽  
P. David J. Weitzman

Two isoenzymes of NADP-linked isocitrate dehydrogenase have been identified in Acinetobacter lwoffi and have been termed isoenzyme-I and isoenzyme-II. The isoenzymes may be separated by ion-exchange chromatography on DEAE-cellulose, by gel filtration on Sephadex G-200, or by zonal ultracentrifugation in a sucrose gradient. Low concentrations of glyoxylate or pyruvate effect considerable stimulation of the activity of isoenzyme-II. The isoenzymes also differ in pH-dependence of activity, kinetic parameters, stability to heat or urea and molecular size. Whereas isoenzyme-I resembles the NADP-linked isocitrate dehydrogenases from other organisms in having a molecular weight under 100000, isoenzyme-II is a much larger enzyme (molecular weight around 300000) resembling the NAD-linked isocitrate dehydrogenases of higher organisms.


2011 ◽  
Vol 63 (3) ◽  
pp. 747-756 ◽  
Author(s):  
A.K.M. Asaduzzaman ◽  
Habibur Rahman ◽  
Tanzima Yeasmin

An acid phosphatase has been isolated and purified from an extract of a germinating black gram seedling. The method was accomplished by gel filtration of a germinating black gram seedling crude extract on sephadex G-75 followed by ion exchange chromatography on DEAE cellulose. The acid phosphatase gave a single band on SDS-polyacrylamide slab gel electrophoresis. The molecular weight of the acid phosphatase determined by SDS-polyacrylamide slab gel electrophoresis was estimated to be 25 kDa. The purified enzyme showed maximum activity at pH 5 and at temperature of 55?C. Mg2+, Zn2+ and EDTA had an inhibitory effect on the activity of the acid phosphatase. Black gram seedling acid phosphatase was activated by K+, Cu2+ and Ba2+. The Km value of the enzyme was found to be 0.49 mM for pNPP as substrate.


2001 ◽  
Vol 47 (8) ◽  
pp. 767-772 ◽  
Author(s):  
A KM Shofiqur Rahman ◽  
Shinya Kawamura ◽  
Masahiro Hatsu ◽  
M M Hoq ◽  
Kazuhiro Takamizawa

The zygomycete fungus Rhizomucor pusillus HHT-1, cultured on L(+)arabinose as a sole carbon source, produced extracellular α-L-arabinofuranosidase. The enzyme was purified by (NH4)2SO4fractionation, gel filtration, and ion exchange chromatography. The molecular mass of this monomeric enzyme was 88 kDa. The native enzyme had a pI of 4.2 and displayed a pH optimum and stability of 4.0 and 7.0–10.0, respectively. The temperature optimum was 65°C, and it was stable up to 70°C. The Kmand Vmaxfor p-nitrophenyl α-L-arabinofuranoside were 0.59 mM and 387 µmol·min–1·mg–1protein, respectively. Activity was not stimulated by metal cofactors. The N-terminal amino acid sequence did not show any similarity to other arabinofuranosidases. Higher hydrolytic activity was recorded with p-nitrophenyl α-L-arabinofuranoside, arabinotriose, and sugar beet arabinan; lower hydrolytic activity was recorded with oat–spelt xylan and arabinogalactan, indicating specificity for the low molecular mass L(+)-arabinose containing oligosaccharides with furanoside configuration.Key words: α-L-arabinofuranosidase, enzyme purification, amino acid sequence, Rhizomucor pusillus.


Sign in / Sign up

Export Citation Format

Share Document