scholarly journals Caldolase, a chelator-insensitive extracellular serine proteinase from a Thermus spp

1989 ◽  
Vol 262 (2) ◽  
pp. 409-416 ◽  
Author(s):  
G A Saravani ◽  
D A Cowan ◽  
R M Daniel ◽  
H W Morgan

An extracellular alkaline serine proteinase from Thermus strain ToK3 was isolated and purified to homogeneity by (NH4)2SO4 precipitation followed by ion-exchange chromatography on DEAE-cellulose and QAE-Sephadex, affinity chromatography on N alpha-benzyloxycarbonyl-D-phenylalanyl-triethylenetetraminyl-Sepha rose 4B and gel-filtration chromatography on Sephadex G-75. The purified enzyme had a pI of 8.9 and an Mr determined by gel-permeation chromatography of 25,000. The specific activity was about 37,700 proteolytic units/mg with casein as substrate, and the pH optimum was 9.5. Proteolytic activity was inhibited by low concentrations of di-isopropyl phosphorofluoridate and phenylmethanesulphonyl fluoride, but was unaffected by EDTA, EGTA, o-phenanthroline, N-ethyl-5-phenylisoxazolium-3′-sulphonate, N alpha-p-tosyl-L-phenylalanylchloromethane, N alpha-p-tosyl-L-lysylchloromethane, trypsin inhibitors and pepstatin A. The enzyme contained approx. 10% carbohydrate and four disulphide bonds. No Ca2+, Zn2+ or free thiol groups were detected. It hydrolysed several native and dye-linked proteins and synthetic chromogenic peptides and esters. The enzyme was very thermostable (half-life values were 840 min at 80 degrees C, 45 min at 90 degrees C and 5 min at 100 degrees C). The enzyme was unstable at low ionic strength: after 60 min at 75 degrees C in 0.1 M-Tris/acetate buffer, pH 8, only 20% activity remained, compared with no loss in 0.1 M-Tris/acetate buffer, pH 8, containing 0.4 M-NaCl.

1993 ◽  
Vol 295 (2) ◽  
pp. 463-469 ◽  
Author(s):  
S A Freeman ◽  
K Peek ◽  
M Prescott ◽  
R Daniel

The Thermus isolate Rt4A2 was found to produce an extracellular chelator-resistant proteinase. The proteinase was purified to homogeneity by (NH4)2SO4 precipitation, cation-exchange chromatography, gel-filtration chromatography, and weak anion-exchange chromatography. The Rt4A2 proteinase was found to have properties typical of an alkaline serine proteinase. It had a pH optimum of 9.0 and was specifically inhibited by phenylmethanesulphonyl fluoride. Its isoelectric point was greater than 10.25. Its molecular-mass was 31.6 kDa as determined by SDS/PAGE. N-terminal sequencing has shown it to have high sequence similarity with other serine proteinases from Thermus species. The proteinase hydrolysed a number of substrates including fibrin, casein, haemoglobin, collagen, albumin and the synthetic chromogenic peptide substrate Suc-Ala-Ala-Pro-Phe-NH-Np. The specific activity of the purified proteinase using azocasein as substrate was 313 units/mg. Substrate inhibition was observed above an azocasein concentration of 0.05% (w/v). Esterase activity was directed mainly towards those substrates containing the aliphatic or aromatic residues of alanine, glycine, tryptophan, tyrosine and phenylalanine. Thermostability half-lives of greater than 7 days at 70 degrees C, 43 h at 80 degrees C and 90 min at 90 degrees C were found in the presence of 5 mM CaCl2. At 90 degrees C increasing the CaCl2 concentration 100-fold (0.5 mM to 50 mM) caused a 4.3-fold increase in the half-life of the enzyme from 30 to 130 min. Half-lives of 19.4 min at 100 degrees C and 4.4 min at 105 degrees C were found in the presence of 50 mM CaCl2. The metal chelators EGTA and EDTA reduced the stability at higher temperatures but had no effect on the activity of the proteinase. Activity was not stimulated by common metal activators such as Ca2+, Mg2+ and Zn2+.


1972 ◽  
Vol 130 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Colin H. Self ◽  
P. David J. Weitzman

Two isoenzymes of NADP-linked isocitrate dehydrogenase have been identified in Acinetobacter lwoffi and have been termed isoenzyme-I and isoenzyme-II. The isoenzymes may be separated by ion-exchange chromatography on DEAE-cellulose, by gel filtration on Sephadex G-200, or by zonal ultracentrifugation in a sucrose gradient. Low concentrations of glyoxylate or pyruvate effect considerable stimulation of the activity of isoenzyme-II. The isoenzymes also differ in pH-dependence of activity, kinetic parameters, stability to heat or urea and molecular size. Whereas isoenzyme-I resembles the NADP-linked isocitrate dehydrogenases from other organisms in having a molecular weight under 100000, isoenzyme-II is a much larger enzyme (molecular weight around 300000) resembling the NAD-linked isocitrate dehydrogenases of higher organisms.


1978 ◽  
Vol 175 (3) ◽  
pp. 1051-1067 ◽  
Author(s):  
K K Mäkinen ◽  
P L Mäkinen

Two arylamidases (I and II) were purified from human erythrocytes by a procedure that comprised removal of haemoglobin from disrupted cells with CM-Sephadex D-50, followed by treatment of the haemoglobin-free preparation subsequently with DEAE-cellulose, gel-permeation chromatography on Sephadex G-200, gradient solubilization on Celite, isoelectric focusing in a pH gradient from 4 to 6, gel-permeation chromatography on Sephadex G-100 (superfine), and finally affinity chromatography on Sepharose 4B covalently coupled to L-arginine. In preparative-scale purifications, enzymes I and II were separated at the second gel-permeation chromatography. Enzyme II was obtained as a homogeneous protein, as shown by several criteria. Enzyme I hydrolysed, with decreasing rates, the L-amino acid 2-naphtylamides of lysine, arginine, alanine, methionine, phenylalanine and leucine, and the reactions were slightly inhibited by 0.2 M-NaCl. Enzyme II hydrolysed most rapidly the corresponding derivatives of arginine, leucine, valine, methionine, proline and alanine, in that order, and the hydrolyses were strongly dependent on Cl-. The hydrolysis of these substrates proceeded rapidly at physiological Cl- concentration (0.15 M). The molecular weights (by gel filtration) of enzymes I and II were 85 000 and 52 500 respectively. The pH optimum was approx. 7.2 for both enzymes. The isoelectric point of enzyme II was approx. 4.8. Enzyme I was activated by Co2+, which did not affect enzyme II to any noticeable extent. The kinetics of reactions catalysed by enzyme I were characterized by strong substrate inhibition, but enzyme II was not inhibited by high substrate concentrations. The Cl- activated enzyme II also showed endopeptidase activity in hydrolysing bradykinin.


1987 ◽  
Vol 241 (1) ◽  
pp. 129-135 ◽  
Author(s):  
R Zolfaghari ◽  
C R Baker ◽  
P C Canizaro ◽  
A Amirgholami ◽  
F J Bĕhal

A high-Mr neutral endopeptidase-24.5 (NE) that cleaved bradykinin at the Phe5-Ser6 bond was purified to apparent homogeneity from human lung by (NH4)2SO4 fractionation, ion-exchange chromatography and gel filtration. The final enzyme preparation produced a single enzymically active protein band after electrophoresis on a 5% polyacrylamide gel. Human lung NE had an Mr of 650,000 under non-denaturing conditions, but after denaturation and electrophoresis on an SDS/polyacrylamide gel NE dissociated into several lower-Mr components (Mr 21,000-32,000) and into two minor components (Mr approx. 66,000). The enzyme activity was routinely assayed with the artificial substrate Z-Gly-Gly-Leu-Nan (where Z- and -Nan represent benzyloxycarbonyl- and p-nitroanilide respectively). NE activity was enhanced slightly by reducing agents, greatly diminished by thiol-group inhibitors and unchanged by serine-proteinase inhibitors. Human lung NE was inhibited by the univalent cations Na+ and K+. No metal ions were essential for activity, but the heavy-metal ions Cu2+, Hg2+ and Zn2+ were potent inhibitors. With the substrate Z-Gly-Gly-Leu-Nan a broad pH optimum from pH 7.0 to pH 7.6 was observed, and a Michaelis constant value of 1.0 mM was obtained. When Z-Gly-Gly-Leu-Nap (where -Nap represents 2-naphthylamide) was substituted for the above substrate, no NE-catalysed hydrolysis occurred, but Z-Leu-Leu-Glu-Nap was readily hydrolysed by NE. In addition, NE hydrolysed Z-Gly-Gly-Arg-Nap rapidly, but at pH 9.8 rather than in the neutral range. Although human lung NE was stimulated by SDS, the extent of stimulation was not appreciable as compared with the extent of SDS stimulation of NE from other sources.


1988 ◽  
Vol 252 (3) ◽  
pp. 865-874 ◽  
Author(s):  
R A Harrison

A study was made of hyaluronidase in ram semen. The end-group assay conditions used to determine activity quantitatively were chosen to ensure reliability as well as sensitivity [Gacesa, Savitsky, Dodgson & Olavesen (1981) Anal. Biochem. 118, 76-84]; they led to 1 W.H.O. Standard International Hyaluronidase Unit displaying 0.1263 EC munit (1 EC unit of activity releases 1 mumol equivalent of N-acetylglucosamine end groups/min at 37 degrees C). All the activity in the semen was shown to be sperm-derived, and intact spermatozoa were estimated to contain 1.23 EC units per 10(9) cells. In a low-ionic-strength medium, only some 20% of the hyaluronidase was extractable, although up to 80% of the activity could be extracted as the ionic strength was increased; further addition of detergent extracted the remainder. During purification of the enzyme, it was found that inclusion of poly(vinyl alcohol) in the media stabilized the activity; detergent inclusion also improved the yield, especially during early stages. As a consequence both of reliable quantitative determination and of stabilization, a number of forms of hyaluronidase could be isolated in high yield, by using anion-exchange chromatography, cation-exchange chromatography, affinity chromatography and gel filtration. The existence of all these forms was confirmed by electrophoresis and immunoblotting with the use of a monoclonal anti-(ram hyaluronidase) antibody, and their presence in very freshly prepared sperm extracts was demonstrated. The specific activity of the isolated major hyaluronidase form was 15.0 EC units/mg; this was equivalent to 119,000 W.H.O. units/mg, higher than any other previously reported values.


1993 ◽  
Vol 71 (1-2) ◽  
pp. 22-26 ◽  
Author(s):  
Pratima Dutta ◽  
Gopal C. Majumder

A neutral β-D-galactosidase has been partially purified from rat epididymis and characterized. The enzyme having molecular mass of approximately 50 kilodaltons has been purified 400-fold by using calcium phosphate gel adsorption, DEAE-cellulose chromatography, Sephadex G-100 gel filtration, and concanavalin A - agarose affinity chromatography. Although the neutral enzyme binds to the concanavalin A affinity column, the activity could be eluted with α-methyl mannoside only if the buffer contained salt (NaCl) at a concentration as high as 0.3 M. The enzyme was of cytosolic origin, since 90% of the total enzymic activity of the tissue homogenate was recovered in the soluble fraction of these cells. The neutral β-galactosidase was not dependent on metal ions for its activity and it had a pH optimum of 7.0. Zn2+, p-chloromercuribenzoate, Hg2+, and Pb2+ served as potent inhibitors of the enzyme. There was a marked increase (approximately fourfold) in the specific activity of the neutral β-galactosidase during sexual maturity of epididymis in vivo.Key words: neutral β-galactosidase, rat epididymal, cytosolic, developmental, sexual maturity.


1987 ◽  
Vol 65 (10) ◽  
pp. 899-908 ◽  
Author(s):  
F. Moranelli ◽  
M. Yaguchi ◽  
G. B. Calleja ◽  
A. Nasim

The extracellular α-amylase activity of the yeast Schwanniomyces alluvius has been purified by anion-exchange chromatography on DEAE-cellulose and gel-filtration chromatography on Sephadex G-100. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS–PAGE) and N-terminal amino acid analysis of the purified sample indicated that the enzyme preparation was homogeneous. The enzyme is a glycoprotein having a molecular mass of 52 kilodaltons (kDa) estimated by SDS–PAGE and 39 kDa by gel filtration on Sephadex G-100. Chromatofocusing shows that it is an acidic protein. It is resistant to trypsin but sensitive to proteinase K. Its activity is inhibited by the divalent cation chelators EDTA and EGTA and it is insensitive to sulfhydryl-blocking agents. Exogenous divalent cations are inhibitory as are high concentrations of monovalent salts. The enzyme has a pH optimum between 3.75 and 5.5 and displays maximum stability in the pH range of 4.0–7.0. Under the conditions tested, the activity is maximal between 45 and 50 °C and is very thermolabile. Analysis of its amino acid composition supports its acidic nature.


2016 ◽  
Vol 47 (4) ◽  
Author(s):  
Abood & Hakeem

Amylase inhibitors were purified by many sequential steps included concentration by gradual addition of ammonium sulfate at  saturation ratios. ranged from 0 to 90% . The best ratio of saturation was found to be 70% as the specific activity and inhibition activity toward Human alpha-amylase(HAS)  were the highest ( 8 U/mg and 6 U/ml respectively as compared to those of the rest ratios, the ratio of saturation with ammonium sulfate 60 % and then 50%, (5.8 ,5.5  )U/ml and( 7.7 ،7 )U/mg respectively for inhibition activity and specific activity and for  40% ,30%20%  saturation  the inhibition activity and specific activity were(5 ،4.8 ،4 ) u/ml (6.6 ،6 ،5.8) u/mg respectively .The precepitation step was followed by ionic exchange chromatography technique by DEAE-cellulose column( 3×11 )cm and the results showed that there was one peak with inhibition activity toward (HAS). Further  purification steps were conducted using gel filtration on Sephacryl S-200 column    (1.5  ×  60)cm; the purification folds was5.59 times with outcome of 46.5%.The results of alpha-amylase inhibitors characterization showed that the molecular weight was about 23.44 and 22.9  kDa  as determined by electrophoresis and gel filteration respectively.                                         


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kamal Uddin Zaidi ◽  
Ayesha S. Ali ◽  
Sharique A. Ali

Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme, tyrosinase, catalyzes the first and only rate-limiting steps in melanogenesis. Since the discovery of its melanogenic properties, tyrosinase has been in prime focus and microbial sources of the enzyme are sought. Agaricus bisporus widely known as the common edible mushroom, it’s taking place in high amounts of proteins, enzyme, carbohydrates, fibers, and low fat contents are frequently cited in the literature in relation to their nutritional value. In the present study tyrosinase from Agaricus bisporus was purified by ammonium sulphate precipitation, dialysis followed by gel filtration chromatography on Sephadex G-100, and ion exchange chromatography on DEAE-Cellulose; the enzyme was purified, 16.36-fold to give 26.6% yield on total activity in the crude extract and final specific activity of 52.19 U/mg. The SDS-PAGE electrophoresis showed a migrating protein band molecular weight of 95 kDa. The purified tyrosinase was optimized and the results revealed that the optimum values are pH 7.0 and temperature 35°C. The highest activity was reported towards its natural substrate, L-DOPA, with an apparent Km value of 0.933 mM. This indicated that tyrosinase purified from Agaricus bisporus is a potential source for medical applications.


2014 ◽  
Vol 54 (3) ◽  
pp. 241-253 ◽  
Author(s):  
Janina Wiśniowska ◽  
Bronisława Morawiecka

Two glycoproteidic acid RNases (RNase I and RNase II) were obtained and purified from the seeds of <em>Dactylis glomerata</em> by extraction with acetate buffer, fractionation with ammonium sulfate, ion-exchange chromatography on DEAE-cellulose, DEAE-Sphadex, affinity chromatography on Con A-Sepharose and gel filtration on Bio-Gel P60. RNase I with a specific activity of 2582 U•mg<sup>-1</sup> protein and an optimum pH of 4.9 and RNase II with a specific activity of 1928 U• mg<sup>-1</sup> protein and optimum pH of 4.6, were isolated. They lacked nuclease, phosphodi- and monoesterase activities. Both forms of the enzyme hydrolyzed pyrimidine homopolymers with a preference for poly U and exhibited a low specificity for purine homopolymers (poly G and poly A). RNase I acted with a 3-fold higher hydrolytic activity on poly C homopolymer than RNase IL The hydrolytic activity of both enzymes was inhibited by Zn<sup>+2</sup>, Fe<sup>+2</sup>, Cu<sup>+2</sup> ions when yeast RNA was the substrate. The amines spermine, spermidine and tyramine at a concentration of 0.1 mM increased the enzymatic activity of both RNases by 20 to 60% of the relative activity. The hydrolytic activity of RNases I and II was stimulated by the presence of lentil lectin (LL), soybean lectin (SBA) and potato lectin (STA), and inhibited by the presence of concanavalin A. The 20-200% stimulation and 40-60% inhibition depended on the proportion, on a weight basis, of enzyme to lectin and were reversible in the presence of receptor sugars.


Sign in / Sign up

Export Citation Format

Share Document