Physics of particle collisions at high energies: Limits to phenomenology, Part 2

2008 ◽  
Vol 86 (7) ◽  
pp. 899-910 ◽  
Author(s):  
G Sau ◽  
S K Biswas ◽  
B De ◽  
P Guptaroy ◽  
A Bhattacharya ◽  
...  

Our focus in this work would be concentrated on trying to understand the nature of some very important observables measured for deuteron–gold (d + Au) collisions at relativistic heavy ion collider (RHIC) energies in the light of a particular phenomenological model that we had applied earlier in analyzing data for PP collisions at RHIC and Fermi National Accelerator Laboratory (FNAL) energies with a fair degree of success. In this particular case, as well, our observations and conclusions are exactly similar to those in our previous work. The emphatic ending points, on the whole, to some gross limitations of the chosen phenomenological approach in particular and of the phenomenology as such in general.PACS Nos.: 13.60.Hb, 13.60.Le, 13.60.Rj, 13.85.Ni

2008 ◽  
Vol 86 (7) ◽  
pp. 883-897 ◽  
Author(s):  
G Sau ◽  
S K Biswas ◽  
B De ◽  
P Guptaroy ◽  
A Bhattacharya ◽  
...  

Interpretation and understanding of high-energy PP data in a clear, consistent, and comprehensive manner is crucial for making valid claims to build up any successful theoretical framework for particle interactions. We have tried here to analyze the various sets of PP data available from the pre-ISR days to the latest PP collisions at the relativistic heavy ion collider (RHIC) experiment at [Formula: see text] = 200 GeV in the light of a power-law model. Both mid-rapidity and high-rapidity data sets have been dealt with by applying the same working formula. It is found that the working formula used provides a good description of these wide ranging data sets; but hardly throws any deep insights into the nature of particle interactions that force us to question the worth and rigour of phenomenological studies.PACS Nos.: 13.60.Hb, 13.60.Le, 13.85.Ni


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mahmoud Hanafy ◽  
Omnia S. A. Qandil ◽  
Asmaa G. Shalaby

The strangeness enhancement signature of QGP formation at LHC energies is carefully tackled in the present study. Based on HRG, the particle ratios of mainly strange and multistrange particles are studied at energies from lower s ~ 0.001 up to 13 TeV. The strangeness enhancement clearly appeared at more high energies, and the ratios are confronted to the available experimental data. The particle ratios are also studied using the Cosmic Ray Monte Carlo (CRMC) interface model with its two different event generators, namely, EPOS 1.99 and EPOSlhc, which show a good agreement with the model calculations at the whole range of the energy. We utilize them to produce some particles ratios. EPOS 1.99 is used to estimate particle ratios at lower energies from AGS up to the Relativistic Heavy Ion Collider (RHIC) while EPOSlhc is used at LHC energies. The production of kaons and lambda particles is studied in terms of the mean multiplicity in p-p collisions at energies ranging from 4 to 26 GeV. We find that both HRG model and the used event generators, EPOS 1.99 and EPOSlhc, can describe the particle ratios very well. Additionally, the freeze-out parameters are estimated for different collision systems, such as p-p and Pb-Pb, at LHC energies using both models.


Proceedings ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Saumen Datta ◽  
Rajiv Gavai ◽  
Sourendu Gupta

One of the main goals of the cold baryonic matter (CBM) experiment at FAIR is to explore the phases of strongly interacting matter at finite temperature and baryon chemical potential μ B . The equation of state of quantum chromodynamics (QCD) at μ B > 0 is an essential input for the CBM experiment, as well as for the beam energy scan in the Relativistic Heavy Ion Collider(RHIC) experiment. Unfortunately, it is highly nontrivial to calculate the equation of state directly from QCD: numerical Monte Carlo studies on lattice are not useful at finite μ B . Using the method of Taylor expansion in chemical potential, we estimate the equation of state, namely the baryon number density and its contribution to the pressure, for two-flavor QCD at moderate μ B . We also study the quark number susceptibilities. We examine the technicalities associated with summing the Taylor series, and explore a Pade resummation. An examination of the Taylor series can be used to get an estimate of the location of the critical point in μ B , T plane.


1996 ◽  
Vol 32 (4) ◽  
pp. 2041-2046 ◽  
Author(s):  
A. Greene ◽  
M. Anerella ◽  
J. Cozzolino ◽  
J. Escallier ◽  
D. Fisher ◽  
...  

Author(s):  
R. P. Fliller ◽  
A. Drees ◽  
D. Gassner ◽  
L. Hammons ◽  
G. McIntyre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document