Time-dependence and holography in the c=1 matrix model This paper was presented at the Theory CANADA 4 conference, held at Centre de recherches mathématiques, Montréal, Québec, Canada on 4–7 June 2008.

2009 ◽  
Vol 87 (3) ◽  
pp. 263-266
Author(s):  
Joanna L. Karczmarek

Ideas related to the study of time-dependence in two dimensional Liouville string theory using the c=1 matrix model are reviewed. Following an introduction to Liouville string theory, the matrix model and the relationship between the two, an example of an exact quantum mechanical time-dependent solution is given. There is a brief discussion of the holographic issues complicating the construction of the exact spacetime interpretation of such solutions. An attempt is made to include sufficient background material to make the presentation self-contained and accessible to a non-expert.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ashoke Sen

Abstract In [4] Balthazar, Rodriguez and Yin (BRY) computed the one instanton contribution to the two point scattering amplitude in two dimensional string theory to first subleading order in the string coupling. Their analysis left undetermined two constants due to divergences in the integration over world-sheet variables, but they were fixed by numerically comparing the result with that of the dual matrix model. If we consider n-point scattering amplitudes to the same order, there are actually four undetermined constants in the world-sheet approach. We show that using string field theory we can get finite unambiguous values of all of these constants, and we explicitly compute three of these four constants. Two of the three constants determined this way agree with the numerical result of BRY within the accuracy of numerical analysis, but the third constant seems to differ by 1/2. We also discuss a shortcut to determining the fourth constant if we assume the equality of the quantum corrected D-instanton action and the action of the matrix model instanton. This also agrees with the numerical result of BRY.


2011 ◽  
Vol 20 (13) ◽  
pp. 2613-2622 ◽  
Author(s):  
J. SADEGHI ◽  
B. POURHASSAN

The aim of this paper is to use correspondence between solutions in the c = 1 matrix model collective field theory and coupled dilaton-gravity to a massless scalar field. First, we obtain the incoming and outgoing fluctuations for the time-dependent backgrounds with the lightlike and spacelike boundaries. In the case of spacelike boundaries, we have done here for the first time. Then by using the leg-pole transformations we find the corresponding tachyon field in the two-dimensional string theory for the lightlikes and spacelikes boundary.


2018 ◽  
Vol 33 (30) ◽  
pp. 1830029 ◽  
Author(s):  
Robbert Dijkgraaf ◽  
Edward Witten

This note aims to provide an entrée to two developments in two-dimensional topological gravity — that is, intersection theory on the moduli space of Riemann surfaces — that have not yet become well known among physicists. A little over a decade ago, Mirzakhani discovered[Formula: see text] an elegant new proof of the formulas that result from the relationship between topological gravity and matrix models of two-dimensional gravity. Here we will give a very partial introduction to that work, which hopefully will also serve as a modest tribute to the memory of a brilliant mathematical pioneer. More recently, Pandharipande, Solomon, and Tessler3 (with further developments in Refs. 4–6) generalized intersection theory on moduli space to the case of Riemann surfaces with boundary, leading to generalizations of the familiar KdV and Virasoro formulas. Though the existence of such a generalization appears natural from the matrix model viewpoint — it corresponds to adding vector degrees of freedom to the matrix model — constructing this generalization is not straightforward. We will give some idea of the unexpected way that the difficulties were resolved.


2006 ◽  
Vol 21 (30) ◽  
pp. 6055-6086 ◽  
Author(s):  
C. PAPAGEORGAKIS ◽  
S. RAMGOOLAM

We study the time-dependent dynamics of a collection of N collapsing/expanding D0-branes in type IIA string theory. We show that the fuzzy-S3 and S5 provide time-dependent solutions to the matrix model of D0-branes and its DBI generalisation. Some intriguing cancellations in the calculation of the non-Abelian DBI matrix actions result in the fuzzy-S3 and S5 having the same dynamics at large-N. For the matrix model, we find analytic solutions describing the time-dependent radius, in terms of Jacobi elliptic functions. Investigation of the physical properties of these configurations shows that there are no bounces for the trajectory of the collapse at large-N. We also write down a set of useful identities for fuzzy-S3, fuzzy-S5 and general fuzzy odd-spheres.


1993 ◽  
Vol 404 (1-2) ◽  
pp. 91-108 ◽  
Author(s):  
Antal Jevicki ◽  
João P. Rodrigues ◽  
AndréJ. van Tonder

2006 ◽  
Vol 03 (01) ◽  
pp. 1-35 ◽  
Author(s):  
JUAN MALDACENA

We consider two-dimensional string backgrounds. We discuss the physics of long strings that come from infinity. These are related to non-singlets in the dual matrix model description.


1958 ◽  
Vol 11 (2) ◽  
pp. 95-103 ◽  
Author(s):  
A. C. Butcher ◽  
J. S. Lowndes

Much of the work on the theory of diffraction by an infinite wedge has been for cases of harmonic time-dependence. Oberhettinger (1) obtained an expression for the Green's function of the wave equation in the two dimensional case of a line source of oscillating current parallel to the edge of a wedge with perfectly conducting walls. Solutions of the time-dependent wave equation have been obtained by Keller and Blank (2), Kay (3) and more recently by Turner (4) who considered the diffraction of a cylindrical pulse by a half plane.


Sign in / Sign up

Export Citation Format

Share Document