scholarly journals D-instantons, string field theory and two dimensional string theory

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ashoke Sen

Abstract In [4] Balthazar, Rodriguez and Yin (BRY) computed the one instanton contribution to the two point scattering amplitude in two dimensional string theory to first subleading order in the string coupling. Their analysis left undetermined two constants due to divergences in the integration over world-sheet variables, but they were fixed by numerically comparing the result with that of the dual matrix model. If we consider n-point scattering amplitudes to the same order, there are actually four undetermined constants in the world-sheet approach. We show that using string field theory we can get finite unambiguous values of all of these constants, and we explicitly compute three of these four constants. Two of the three constants determined this way agree with the numerical result of BRY within the accuracy of numerical analysis, but the third constant seems to differ by 1/2. We also discuss a shortcut to determining the fourth constant if we assume the equality of the quantum corrected D-instanton action and the action of the matrix model instanton. This also agrees with the numerical result of BRY.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


2004 ◽  
Vol 19 (11) ◽  
pp. 841-853 ◽  
Author(s):  
ASHOKE SEN

Recent investigations involving the decay of unstable D-branes in string theory suggest that the tree level open string theory which describes the dynamics of the D-brane already knows about the closed string states produced in the decay of the brane. We propose a specific conjecture involving quantum open string field theory to explain this classical result, and show that the recent results in two-dimensional string theory are in exact accordance with this conjecture.


2011 ◽  
Vol 20 (13) ◽  
pp. 2613-2622 ◽  
Author(s):  
J. SADEGHI ◽  
B. POURHASSAN

The aim of this paper is to use correspondence between solutions in the c = 1 matrix model collective field theory and coupled dilaton-gravity to a massless scalar field. First, we obtain the incoming and outgoing fluctuations for the time-dependent backgrounds with the lightlike and spacelike boundaries. In the case of spacelike boundaries, we have done here for the first time. Then by using the leg-pole transformations we find the corresponding tachyon field in the two-dimensional string theory for the lightlikes and spacelikes boundary.


1992 ◽  
Vol 07 (11) ◽  
pp. 2559-2588 ◽  
Author(s):  
ASHOKE SEN

A gauge-invariant interacting field theory of subcritical closed strings is constructed. It is shown that for d ≤ 1 this field theory reproduces many of the features of the corresponding matrix model. Among them are the scaling dimensions of the relevant primary fields, identities involving the correlation functions of some of the redundant operators in the matrix model, and the flow between different matrix models under appropriate perturbation. In particular, it is shown that some of the constraints on the partition function derived recently by Dijkgraaf et al. and Fukuma et al. may be interpreted as Ward identities in string field theory.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Kenta Suzuki ◽  
Tadashi Takayanagi

Abstract In this paper we study a connection between Jackiw-Teitelboim (JT) gravity on two-dimensional anti de-Sitter spaces and a semiclassical limit of c < 1 two-dimensional string theory. The world-sheet theory of the latter consists of a space-like Liouville CFT coupled to a non-rational CFT defined by a time-like Liouville CFT. We show that their actions, disk partition functions and annulus amplitudes perfectly agree with each other, where the presence of boundary terms plays a crucial role. We also reproduce the boundary Schwarzian theory from the Liouville theory description. Then, we identify a matrix model dual of our two-dimensional string theory with a specific time-dependent background in c = 1 matrix quantum mechanics. Finally, we also explain the corresponding relation for the two-dimensional de-Sitter JT gravity.


1992 ◽  
Vol 07 (07) ◽  
pp. 1553-1581 ◽  
Author(s):  
ASHOKE SEN

The one-matrix model at the kth multicritical point is known to describe the (2, 2k–1) minimal model coupled to gravity, and the partition function of this model is known to obey a set of Virasoro constraints generated by a set of differential operators Ln. Working at the tree level of string theory, and using the Feigin-Fuchs description of the (2, 2k–1) minimal model, we show that the Virasoro constraints generated by Li (0≤i≤k−2) can be identified with a set of gauge symmetries of the corresponding string field theory.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Ashoke Sen

Abstract In perturbative amplitudes in quantum field theory and string field theory, Cutkosky rule expresses the anti-hermitian part of a Feynman diagram in terms of sum over all its cut diagrams, and this in turn is used to prove unitarity of the theory. For D-instanton contribution to a string theory amplitude, the cutting rule needed for the proof of unitarity is somewhat different; we need to sum over only those cut diagrams for which all the world-sheet boundaries ending on some particular D-instanton lie on the same side of the cut. By working with the closed string effective action, obtained after integrating out the open string modes, we prove that the D-instanton amplitudes actually satisfy these cutting rules, provided the effective action is real. The violation of unitarity in the closed string sector of two dimensional string theory can be traced to the failure of this reality condition. In the critical superstring theory, multi-instanton and multi anti-instanton amplitudes satisfy the reality condition. Contribution to the amplitudes from the instanton anti-instanton sector satisfies the reality condition if we make a specific choice of integration cycle over the configuration space of string fields, whereas contribution due to the non-BPS D-instantons will need to either vanish or have an overall real normalization in order for it to give real contribution. We use Picard-Lefschetz theory to argue that these conditions are indeed satisfied in superstring theories.


2009 ◽  
Vol 87 (3) ◽  
pp. 263-266
Author(s):  
Joanna L. Karczmarek

Ideas related to the study of time-dependence in two dimensional Liouville string theory using the c=1 matrix model are reviewed. Following an introduction to Liouville string theory, the matrix model and the relationship between the two, an example of an exact quantum mechanical time-dependent solution is given. There is a brief discussion of the holographic issues complicating the construction of the exact spacetime interpretation of such solutions. An attempt is made to include sufficient background material to make the presentation self-contained and accessible to a non-expert.


2005 ◽  
Vol 20 (24) ◽  
pp. 5513-5656 ◽  
Author(s):  
ASHOKE SEN

In this review we describe our current understanding of the properties of open string tachyons on an unstable D-brane or brane–antibrane system in string theory. The various string theoretic methods used for this study include techniques of two-dimensional conformal field theory, open string field theory, boundary string field theory, noncommutative solitons, etc. We also describe various attempts to understand these results using field theoretic methods. These field theory models include toy models like singular potential models and p-adic string theory, as well as more realistic version of the tachyon effective action based on Dirac–Born–Infeld type action. Finally we study closed string background produced by the "decaying" unstable D-branes, both in the critical string theory and in the two-dimensional string theory, and describe the open string completeness conjecture that emerges out of this study. According to this conjecture the quantum dynamics of an unstable D-brane system is described by an internally consistent quantum open string field theory without any need to couple the system to closed strings. Each such system can be regarded as a part of the "hologram" describing the full string theory.


Sign in / Sign up

Export Citation Format

Share Document