Spin–orbit splitting in 2Δ states of diatomic molecules

1969 ◽  
Vol 47 (23) ◽  
pp. 2727-2730 ◽  
Author(s):  
H. Lefebvre-Brion ◽  
N. Bessis

The origin of the splitting of the 2Δ states arising from the σπ2 configuration is studied. For light diatomic molecules, the splitting is shown to arise from the spin–other–orbit interaction which gives a small negative value for the spin–orbit coupling constant A. Non-empirical calculations of A for the 2Δ states of the CH, NH+, and NO molecules are in good agreement with experiment. In heavier molecules, the spin–other–orbit interaction becomes negligible and the second-order spin–orbit effect is dominant.


The spin-orbit splitting in orbitally degenerate systems with one open shell usually conforms to Hund’s third rule: that is, the splitting is regular for a less than half-filled shell, and inverted for a more than half-filled shell. The C 2 T 2 states of CF+4 and SiF+4 reported by Mason & Tuckett violate this expectation. We show below how this may occur in AX+4 ions where the dominant atomic spin-orbit coupling arises from motion around the X atoms.



The spin-orbit coupling terms in the molecular electronic Hamiltonian have important, spectroscopically observable, effects. In states possessing an orbital degeneracy (e.g. II states of diatomic molecules) they produce a first-order splitting of the various multiplet levels; and in states which are degenerate in spin only the y give second-order effects embodied in a n effective g tensor. Owing to the complexity of the spin-orbit operators, such effects are usually discussed using simple approximate form s and semi-empirical wave-functions. In this paper, the complete operators are employed in ab initio calculations of (i) the spin-orb it splitting of the 2 II ground states of NO and CH, and (ii) the g tensors of CN and NO 2 . The results are in good agreement with experiment. Detailed analysis of the calculations indicates a firm basis for semi-empirical procedures which could easily be applied to larger molecules. The evaluation of new integrals, involving the spin-orbit operators, is discussed in an appendix.



2017 ◽  
Vol 96 (24) ◽  
Author(s):  
Shaoqiang Guo ◽  
Yuyan Wang ◽  
Cong Wang ◽  
Zilong Tang ◽  
Junying Zhang


2018 ◽  
Vol 32 (05) ◽  
pp. 1850055 ◽  
Author(s):  
Ranber Singh

The spin–orbit splitting (E[Formula: see text]) of valence band maximum at the [Formula: see text] point is significantly smaller in 2D planner honeycomb structures of graphene, silicene, germanene and BN than that in the corresponding 3D bulk counterparts. For 2D planner honeycomb structure of SiC, it is almost same as that for 3D bulk cubic SiC. The bandgap which opens at the K and K[Formula: see text] points due to spin–orbit coupling (SOC) is very small in flat honeycomb structures of graphene and silicene, while in germanene it is about 2 meV. The buckling in these structures of graphene, silicene and germanene increases the bandgap opened at the K and K[Formula: see text] points due to SOC quadratically, while the E[Formula: see text] of valence band maximum at the [Formula: see text] point decreases quadratically with an increase in the magnitude of buckling.







1995 ◽  
Vol 50 (11) ◽  
pp. 1041-1044 ◽  
Author(s):  
J. Schiedt ◽  
R. Weinkauf

Abstract We could resolve the spin-orbit splitting of 160 ± 4 cm-1 in the 2II ground state of O2- anions by high resolution photodetachment photoelectron spectroscopy. The observed splitting is in good agreement with the theoretically derived value. Our directly measured electron affinity of O 2 is 450 ± 2 meV and deviates within experiment errors from previous values. kHz repetition rate was applied to avoid space charge and improve electron energy resolution in a time-of-flight electron energy analyzer.



1977 ◽  
Vol 55 (10) ◽  
pp. 937-942 ◽  
Author(s):  
A. F. Leung ◽  
Ying-Ming Poon

The absorption spectra of UCl5 single crystal were observed in the region between 0.6 and 2.4 μm at room, 77, and 4.2 K temperatures. Five pure electronic transitions were assigned at 11 665, 9772, 8950, 6643, and 4300 cm−1. The energy levels associated with these transitions were identified as the splittings of the 5f1 ground configuration under the influence of the spin–orbit coupling and a crystal field of C2v symmetry. The number of crystal field parameters was reduced by assuming the point-charge model where the positions of the ions were determined by X-ray crystallography. Then, the crystal field parameters and the spin–orbit coupling constant were calculated to be [Formula: see text],[Formula: see text], [Formula: see text], and ξ = 1760 cm−1. The vibronic analysis showed that the 90, 200, and 320 cm−1 modes were similar to the T2u(v6), T1u(v4), and T1u(v3) of an UCl6− octahedron, respectively.



1972 ◽  
Vol 50 (10) ◽  
pp. 1468-1471 ◽  
Author(s):  
Alan D. Westland

An expression for the magnetic susceptibility of octahedral d1 complexes is derived exactly in terms of an orbital reduction factor k taking into account the presence of the formal 2E excited state. Sample calculations show that the improved expression gives results for susceptibility which are lower at times by several percent from those given by previous expressions. The results given by Figgis using Kotani's method are adequately precise when the spin–orbit coupling constant is no larger than ~0.1 Dq.



Sign in / Sign up

Export Citation Format

Share Document