Scattering from a Particular Class of Conducting Corrugated Cylinders

1971 ◽  
Vol 49 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Lotfollah Shafai ◽  
Stanley S. H. Tse

The electrostatic equipotential surfaces of n identical strips intersecting azimuthally along an axis constitute the surfaces of certain corrugated cylinders. The cross sectional geometry of the corrugations varies from the limiting form of the intersecting strips to a circular cylinder at large distances from the intersecting axis. The problem of two-dimensional scattering of electromagnetic waves by these geometries is considered and numerical solutions are found by using two separate methods—a matrix formulation and an integral equation method. The special case of four intersecting strips illuminated by plane electromagnetic waves polarized parallel to the intersecting axis is considered in detail and the numerical results for the surface currents and the scattered fields are evaluated.

2002 ◽  
Vol 43 (3) ◽  
pp. 321-332 ◽  
Author(s):  
Y. Kang ◽  
J.-M. Vanden-Broeck

AbstractSteady two-dimensional free surface flow past a semi-infinite flat plate is considered. The vorticity in the flow is assumed to be constant. For large values of the Froude number F, an analytical relation between F, the vorticity parameter ω and the steepness s of the waves in the far field is derived. In addition numerical solutions are calculated by a boundary integral equation method.


1956 ◽  
Vol 9 (2) ◽  
pp. 198 ◽  
Author(s):  
RN Bracewell

When a celestial source of radio waves is scanned with an aerial beam which is much longer than the source in one direction but suitably narrow in the other, the transformation from the true distribution to the measured value is referred to as strip integration. It is here treated as a special case of two-dimensional aerial smoothing in which the aerial beam is allowed to spin about its centre as it moves about the sky. It is shown that the resolution obtainable is set by the cross-sectional profile of the strip beam in the narrow dimension. Thus, when the strip reduces to a line, the resolution is complete and full reconstruction of the true distribution is possible; but scans must be made in all directions. In the general case it is shown that there is a principal solution, and that a finite number of scans suffices to determine it. A method is presented for reconstructing the principal solution from the observed data.


2021 ◽  
Vol 136 (3) ◽  
pp. 791-812
Author(s):  
Peder A. Tyvand ◽  
Jonas Kristiansen Nøland

AbstractThe onset of thermal convection in two-dimensional porous cavities heated from below is studied theoretically. An open (constant-pressure) boundary is assumed, with zero perturbation temperature (thermally conducting). The resulting eigenvalue problem is a full fourth-order problem without degeneracies. Numerical results are presented for rectangular and elliptical cavities, with the circle as a special case. The analytical solution for an upright rectangle confirms the numerical results. Streamlines penetrating the open cavities are plotted, together with the isotherms for the associated closed thermal cells. Isobars forming pressure cells are depicted for the perturbation pressure. The critical Rayleigh number is calculated as a function of geometric parameters, including the tilt angle of the rectangle and ellipse. An improved physical scaling of the Darcy–Bénard problem is suggested. Its significance is indicated by the ratio of maximal vertical velocity to maximal temperature perturbation.


2021 ◽  
Vol 11 (8) ◽  
pp. 3421
Author(s):  
Cheng-Yu Ku ◽  
Li-Dan Hong ◽  
Chih-Yu Liu ◽  
Jing-En Xiao ◽  
Wei-Po Huang

In this study, we developed a novel boundary-type meshless approach for dealing with two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion equation in layered porous media in the space–time domain. The continuity conditions at the interface of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions were approximated based on the superposition principle utilizing the space–time basis functions of the governing equation. Using the space–time collocation scheme, the numerical solutions of the problem were solved with boundary and initial data assigned on the space–time boundaries, which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the transient flows through the heterogeneous layered porous media in the space–time domain could be solved without using a time-marching scheme. Numerical examples and a convergence analysis were carried out to validate the accuracy and the stability of the method. The results illustrate that an excellent agreement with the analytical solution was obtained. Additionally, the proposed method was relatively simple because we only needed to deal with the boundary data, even for the problems in the heterogeneous layered porous media. Finally, when compared with the conventional time-marching scheme, highly accurate solutions were obtained and the error accumulation from the time-marching scheme was avoided.


1986 ◽  
Vol 29 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Christian Constanda

Kirchhoff's kinematic hypothesis that leads to an approximate two-dimensional theory of bending of elastic plates consists in assuming that the displacements have the form [1]In general, the Dirichlet and Neumann problems for the equilibrium equations obtained on the basis of (1.1) cannot be solved by the boundary integral equation method both inside and outside a bounded domain because the corresponding matrix of fundamental solutions does not vanish at infinity [2]. However, as we show in this paper, the method is still applicable if the asymptotic behaviour of the solution is suitably restricted.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck ◽  
Donald E. Amos

This paper provides a solution for two-dimensional heating over a rectangular region on a homogeneous plate. It has application to verification of numerical conduction codes as well as direct application for heating and cooling of electronic equipment. Additionally, it can be applied as a direct solution for the inverse heat conduction problem, most notably used in thermal protection systems for re-entry vehicles. The solutions used in this work are generated using Green’s functions. Two approaches are used which provide solutions for either semi-infinite plates or finite plates with isothermal conditions which are located a long distance from the heating. The methods are both efficient numerically and have extreme accuracy, which can be used to provide additional solution verification. The solutions have components that are shown to have physical significance. The extremely precise nature of analytical solutions allows them to be used as prime standards for their respective transient conduction cases. This extreme precision also allows an accurate calculation of heat flux by finite differences between two points of very close proximity which would not be possible with numerical solutions. This is particularly useful near heated surfaces and near corners. Similarly, sensitivity coefficients for parameter estimation problems can be calculated with extreme precision using this same technique. Another contribution of these solutions is the insight that they can bring. Important dimensionless groups are identified and their influence can be more readily seen than with numerical results. For linear problems, basic heating elements on plates, for example, can be solved to aid in understanding more complex cases. Furthermore these basic solutions can be superimposed both in time and space to obtain solutions for numerous other problems. This paper provides an analytical two-dimensional, transient solution for heating over a rectangular region on a homogeneous square plate. Several methods are available for the solution of such problems. One of the most common is the separation of variables (SOV) method. In the standard implementation of the SOV method, convergence can be slow and accuracy lacking. Another method of generating a solution to this problem makes use of time-partitioning which can produce accurate results. However, numerical integration may be required in these cases, which, in some ways, negates the advantages offered by the analytical solutions. The method given herein requires no numerical integration; it also exhibits exponential series convergence and can provide excellent accuracy. The procedure involves the derivation of previously-unknown simpler forms for the summations, in some cases by virtue of the use of algebraic components. Also, a mathematical identity given in this paper can be used for a variety of related problems.


Sign in / Sign up

Export Citation Format

Share Document