Application of the Functional Formalism to Investigation of the Photoelectric Counting Distribution

1971 ◽  
Vol 49 (13) ◽  
pp. 1724-1730 ◽  
Author(s):  
Andrzej Zardecki

A general formula is derived relating the generating function of the N-fold photoelectron counting distribution to the characteristic functional of the optical field. For a stationary Gaussian radiation field the generating function is expressed as an infinite product involving eigenvalues of a set of integral equations. The results of Bédard, Dialetis, and Cantrell are shown to hold as special cases. Addition of photoelectric counts from correlated Gaussian light is analyzed and the appropriate generating function is given.


10.37236/2021 ◽  
2011 ◽  
Vol 18 (2) ◽  
Author(s):  
Adrian Duane ◽  
Jeffrey Remmel

A pattern $P$ of length $j$ has the minimal overlapping property if two consecutive occurrences of the pattern can overlap in at most one place, namely, at the end of the first consecutive occurrence of the pattern and at the start of the second consecutive occurrence of the pattern. For patterns $P$ which have the minimal overlapping property, we derive a general formula for the generating function for the number of consecutive occurrences of $P$ in words, permutations and $k$-colored permutations in terms of the number of maximum packings of $P$ which are patterns of minimal length which has $n$ consecutive occurrences of the pattern $P$. Our results have as special cases several results which have appeared in the literature. Another consequence of our results is to prove a conjecture of Elizalde that two permutations $\alpha$ and $\beta$ of size $j$ which have the minimal overlapping property are strongly $c$-Wilf equivalent if $\alpha$ and $\beta$ have the same first and last elements.



2010 ◽  
Vol 94 (531) ◽  
pp. 430-437
Author(s):  
Thomas J. Osler

In the year 1656 John Wallis published his Arithmetica Infinitorum, [1], in which he displayed many ideas that were to lead to the integral calculus of Newton. In this work we find the celebrated infinite product of Wallis which gives π,Earlier in 1593, Vieta [2] found another infinite product which gives πBut, since Wallis does not mention it, we suppose that he was unaware of it. (Remarkably, these two seemingly different products are special cases of a more general formula [3].)





2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.



1986 ◽  
Vol 9 (2) ◽  
pp. 293-300 ◽  
Author(s):  
C. Nasim

In this paper we deal with dual integral equations with an arbitrary weight function and Hankel kernels of distinct and general order. We propose an operational procedure, which depends on exploiting the properties of the Mellin transforms, and readily reduces the dual equations to a single equation. This then can be inverted by the Hankel inversion to give us an equation of Fredholm type, involving the unknown function. Most of the known results are then derived as special cases of our general result.



1974 ◽  
Vol 29 (3) ◽  
pp. 445-451 ◽  
Author(s):  
W. Kessel

A method of solution of the Eliashberg equations in the theory of superconductivity is derived which uses the fact that near the transition point the energy gap is small compared to the energies over which the electron-phonon properties vary appreciably. On this basis the Eliashberg equations are converted into linear inhomogeneous integral equations. Their solution is given in operator form and provides a general formula for the transition temperature



1969 ◽  
Vol 16 (4) ◽  
pp. 281-289 ◽  
Author(s):  
B. D. Sleeman

Some years ago Lambe and Ward (1) and Erdélyi (2) obtained integral equations for Heun polynomials and Heun functions. The integral equations discussed by these authors were of the formFurther, as is well known, the Heun equation includes, among its special cases, Lamé's equation and Mathieu's equation and so (1.1) may be considered a generalisation of the integral equations satisfied by Lamé polynomials and Mathieu functions. However, integral equations of the type (1.1) are not the only ones satisfied by Lamé polynomials; Arscott (3) discussed a class of non- linear integral equations associated with these functions. This paper then is concerned with discussing the existence of non-linear integral equations satisfied by solutions of Heun's equation.



Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1231
Author(s):  
Hans Volkmer

It is shown that symmetric products of Heine–Stieltjes quasi-polynomials satisfy an addition formula. The formula follows from the relationship between Heine–Stieltjes quasi-polynomials and spaces of generalized spherical harmonics, and from the known explicit form of the reproducing kernel of these spaces. In special cases, the addition formula is written out explicitly and verified. As an application, integral equations for Heine–Stieltjes quasi-polynomials are found.



1931 ◽  
Vol 2 (3) ◽  
pp. 164-167 ◽  
Author(s):  
A. C. Aitken

In an earlier paper, which this note is intended to supplement and in some respects improve, the writer gave a general theorem of duality relating to isobaric determinants with elements Cr and Hr, the elementary and the complete homogeneous symmetric functions of a set of variables. The result was shewn to include as special cases the dual forms of “bi-alternant” symmetric functions given by Jacobi and Naegelsbach, as well as two equivalent forms of isobaric determinant used by MacMahon as a generating function in an important problem of permutations.



1962 ◽  
Vol 13 (2) ◽  
pp. 179-187 ◽  
Author(s):  
J. Burlak

Dual integral equations of the formwhere f(x) and g(x) are given functions, ψ(x) is unknown, k≧0, μ, v and α are real constants, have applications to diffraction theory and also to dynamical problems in elasticity. The special cases v = −μ, α = 0 and v = μ = 0, 0<α2<1 were treated by Ahiezer (1). More recently, equations equivalent to the above were solved by Peters (2) who adapted a method used earlier by Gordon (3) for treating the (extensively studied) case μ = v, k = 0.



Sign in / Sign up

Export Citation Format

Share Document