scholarly journals Minimal Overlapping Patterns in Colored Permutations

10.37236/2021 ◽  
2011 ◽  
Vol 18 (2) ◽  
Author(s):  
Adrian Duane ◽  
Jeffrey Remmel

A pattern $P$ of length $j$ has the minimal overlapping property if two consecutive occurrences of the pattern can overlap in at most one place, namely, at the end of the first consecutive occurrence of the pattern and at the start of the second consecutive occurrence of the pattern. For patterns $P$ which have the minimal overlapping property, we derive a general formula for the generating function for the number of consecutive occurrences of $P$ in words, permutations and $k$-colored permutations in terms of the number of maximum packings of $P$ which are patterns of minimal length which has $n$ consecutive occurrences of the pattern $P$. Our results have as special cases several results which have appeared in the literature. Another consequence of our results is to prove a conjecture of Elizalde that two permutations $\alpha$ and $\beta$ of size $j$ which have the minimal overlapping property are strongly $c$-Wilf equivalent if $\alpha$ and $\beta$ have the same first and last elements.


1971 ◽  
Vol 49 (13) ◽  
pp. 1724-1730 ◽  
Author(s):  
Andrzej Zardecki

A general formula is derived relating the generating function of the N-fold photoelectron counting distribution to the characteristic functional of the optical field. For a stationary Gaussian radiation field the generating function is expressed as an infinite product involving eigenvalues of a set of integral equations. The results of Bédard, Dialetis, and Cantrell are shown to hold as special cases. Addition of photoelectric counts from correlated Gaussian light is analyzed and the appropriate generating function is given.



2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.



1931 ◽  
Vol 2 (3) ◽  
pp. 164-167 ◽  
Author(s):  
A. C. Aitken

In an earlier paper, which this note is intended to supplement and in some respects improve, the writer gave a general theorem of duality relating to isobaric determinants with elements Cr and Hr, the elementary and the complete homogeneous symmetric functions of a set of variables. The result was shewn to include as special cases the dual forms of “bi-alternant” symmetric functions given by Jacobi and Naegelsbach, as well as two equivalent forms of isobaric determinant used by MacMahon as a generating function in an important problem of permutations.



2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Bing-Qian Wang ◽  
Zheng-Wen Long ◽  
Chao-Yun Long ◽  
Shu-Rui Wu

Using the momentum space representation, we study the (2 + 1)-dimensional Duffin-Kemmer-Petiau oscillator for spin 0 particle under a magnetic field in the presence of a minimal length in the noncommutative space. The explicit form of energy eigenvalues is found, and the wave functions and the corresponding probability density are reported in terms of the Jacobi polynomials. Additionally, we also discuss the special cases and depict the corresponding numerical results.



1993 ◽  
Vol 113 (2) ◽  
pp. 267-280 ◽  
Author(s):  
G. E. Farr

AbstractThe Whitney quasi-rank generating function, which generalizes the Whitney rank generating function (or Tutte polynomial) of a graph, is introduced. It is found to include as special cases the weight enumerator of a (not necessarily linear) code, the percolation probability of an arbitrary clutter and a natural generalization of the chromatic polynomial. The crucial construction, essentially equivalent to one of Kung, is a means of associating, to any function, a rank-like function with suitable properties. Some of these properties, including connections with the Hadamard transform, are discussed.



2004 ◽  
Vol 19 (17n18) ◽  
pp. 3083-3092 ◽  
Author(s):  
EQAB M. RABEI ◽  
TAREQ S. ALHALHOLY ◽  
AKRAM ROUSAN

The Laplace transform of fractional integrals and fractional derivatives is used to develop a general formula for determining the potentials of arbitrary forces: conservative and nonconservative in order to introduce dissipative effects (such as friction) into Lagrangian and Hamiltonian mechanics. The results are found to be in exact agreement with Riewe's results of special cases. Illustrative examples are given.



2017 ◽  
Vol 28 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Zhonghua Li ◽  
Chen Qin

In this paper, the extended double shuffle relations for interpolated multiple zeta values (MZVs) are established. As an application, Hoffman’s relations for interpolated MZVs are proved. Furthermore, a generating function for sums of interpolated MZVs of fixed weight, depth and height is represented by hypergeometric functions, and we discuss some special cases.



1996 ◽  
Vol 9 (2) ◽  
pp. 159-170
Author(s):  
Alexander Dukhovny

Considered are bulk systems of GI/M/1 type in which the server stands by when it is idle, waits for the first group to arrive if the queue is empty, takes customers up to its capacity and is not available when busy. Distributions of arrival group size and server's capacity are not restricted. The queueing process is analyzed via an augmented imbedded Markov chain. In the general case, the generating function of the steady-state probabilities of the chain is found as a solution of a Riemann boundary value problem. This function is proven to be rational when the generating function of the arrival group size is rational, in which case the solution is given in terms of roots of a characteristic equation. A necessary and sufficient condition of ergodicity is proven in the general case. Several special cases are studied in detail: single arrivals, geometric arrivals, bounded arrivals, and an arrival group with a geometric tail.



2020 ◽  
Vol 42 ◽  
pp. e111
Author(s):  
Ana Carla Percontini ◽  
Frank Gomes-Silva ◽  
Gauss Moutinho Crdeiro ◽  
Pedro Rafael Marinho

We define a new class of distributions with one extra shapeparameter including some special cases. We provide numerical and computational aspects of the new class. We proposefunctions using the \textsf{R} language to fit any distribution in this family to a data set. In addition, such functions are implemented efficientlyusing the library \textsf{Rcpp} that enables the incorporation of the codes \textsf{C++} in \textsf{R} automatically. Some examples are presentedfor using the implemented routines in practice. We derive some mathematical properties of this class including explicit expressionsfor the moments, generating function and mean deviations. We discuss the estimation of the model parametersby maximum likelihood and provide an application to a real data set.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Paul Levande

International audience We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article. On examine les cas spéciaux $q=1$ et $t=0$ de la conjecture des fonctions de stationnement. Cette conjecture déclare que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à la fonction génératrice bivariée (paramètres $area$ et $dinv$) sur l'ensemble des fonctions de stationnement. Haglund a prouvé récemment que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à une fonction génératrice bivariée sur l'ensemble des matrices de Tesler triangulaires supérieures dont la somme de chaque équerre vaut un. On donne une interprétation combinatoire de la fonction génératrice de Haglund pour $q=1$ et on prouve le cas correspondant de la conjecture dans le cas des fonctions de stationnement (prouvé d'abord par Garsia et Haiman). On discute aussi d'une preuve possible du cas $t=0$, cohérente avec cette interprétation combinatoire. On conclut en discutant brièvement les raffinements possibles de la conjecture des fonctions de stationnement de ce point de vue. $\textbf{Note ajoutée sur épreuve}$: j'ai trouvé depuis cet article une preuve du cas $t=0$ et conjecturé des raffinements possibles. Ces résultats seront probablement présentés dans un article ultérieur.



Sign in / Sign up

Export Citation Format

Share Document