Gauge hierarchies for chiral SU(N) × SU(N) groups

1976 ◽  
Vol 54 (16) ◽  
pp. 1660-1663 ◽  
Author(s):  
Shalom Eliezer

We have presented a special case where a hierarchy of spontaneous breaking of the symmetries can be achieved in conventional gauge theories (i.e. the Higgs scalars are elementary bosons and the coupling constants of the quartic interactions are small). We break spontaneously the chiral group SU(N) × SU(N) with Higgs scalars transforming like the (N, [Formula: see text]) representation of SU(N) × SU(N). By minimizing the potential we obtain a set of algebraic equations of the type[Formula: see text]where ηj are the vacuum expectation values of the Higgs scalars and μi2 and Aij are parameters. In order to get a hierarchy of spontaneous symmetry breaking we obtain the condition det Aij = 0.

2001 ◽  
Vol 16 (17) ◽  
pp. 3011-3024 ◽  
Author(s):  
M. NAPSUCIALE ◽  
S. RODRIGUEZ

It is shown that most of the unusual properties of the lowest lying scalar (and pseudoscalar) mesons can be understood, at the qualitative and quantitative level, on the basis of the breakdown of the UA(1) symmetry coupled to the vacuum expectation values of scalars by the spontaneous breaking of chiral symmetry.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Soumyadeep Chaudhuri ◽  
Eliezer Rabinovici

Abstract Considering marginally relevant and relevant deformations of the weakly coupled (3 + 1)-dimensional large N conformal gauge theories introduced in [1], we study the patterns of phase transitions in these systems that lead to a symmetry-broken phase in the high temperature limit. These deformations involve only the scalar fields in the models. The marginally relevant deformations are obtained by varying certain double trace quartic couplings between the scalar fields. The relevant deformations, on the other hand, are obtained by adding masses to the scalar fields while keeping all the couplings frozen at their fixed point values. At the N → ∞ limit, the RG flows triggered by these deformations approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed points lie on a conformal manifold with the shape of a circle in the space of couplings. As shown in [1], in certain parameter regimes a subset of points on this manifold exhibits thermal order characterized by the spontaneous breaking of a global ℤ2 or U(1) symmetry and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR fixed point which lacks the thermal order. Thus, the systems defined by these RG flows undergo a transition from a disordered phase at low temperatures to an ordered phase at high temperatures. This provides examples of both inverse symmetry breaking and symmetry nonrestoration. For the relevant deformations, we demonstrate that a variety of phase transitions are possible depending on the signs and magnitudes of the squares of the masses added to the scalar fields. Using thermal perturbation theory, we derive the approximate values of the critical temperatures for all these phase transitions. All the results are obtained at the N → ∞ limit. Most of them are found in a reliable weak coupling regime and for others we present qualitative arguments.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Taeyoon Moon ◽  
Phillial Oh

We explore the possibility of the spontaneous symmetry breaking in 5D conformally invariant gravity, whose action consists of a scalar field nonminimally coupled to the curvature with its potential. Performing dimensional reduction via ADM decomposition, we find that the model allows an exact solution giving rise to the 4D Minkowski vacuum. Exploiting the conformal invariance with Gaussian warp factor, we show that it also admits a solution which implements the spontaneous breaking of conformal symmetry. We investigate its stability by performing the tensor perturbation and find the resulting system is described by the conformal quantum mechanics. Possible applications to the spontaneous symmetry breaking of time-translational symmetry along the dynamical fifth direction and the brane-world scenario are discussed.


2010 ◽  
Vol 25 (08) ◽  
pp. 1725-1738 ◽  
Author(s):  
YOSHIO KOIDE

In the so-called yukawaon model, where the effective Yukawa coupling constants [Formula: see text] are given by vacuum expectation values (VEV's) of gauge singlet scalars (yukawaons) Yf with 3×3 components, i.e. [Formula: see text], massless (and light) scalars appear because a global flavor symmetry is assumed. In order to demonstrate whether such massless scalars in the yukawaon model are harmless or not, yukawaon masses are explicitly estimated, as an example, in the charged lepton sector.


Sign in / Sign up

Export Citation Format

Share Document