High-resolution emission bands of the A2Π – X2Π system of SO+

1984 ◽  
Vol 62 (12) ◽  
pp. 1792-1800 ◽  
Author(s):  
J. L. Hardwick ◽  
Yin Luo ◽  
D. H. Winicur ◽  
J. A. Coxon

The A2Πi → X2Πr visible band system of SO+ has been recorded photographically at high resolution. Molecular constants for the A and X states have been fitted to the measured line positions of the 0–5, 0–6, 1–5, and 1–6 bands. Λ-type doubling was resolved completely for most of the lines of the 2Π1/2 – 2Π1/2 sub-bands, and has led to the first reported values of the splitting constants p′ and p″. All the estimated constants have been merged with constants obtained previously from medium-resolution spectra for other levels of the X2Π ground state. A self-consistent set of constants is reported for ν′ = 0 and 1 and for ν = 4–9, together with revised equilibrium constants.


1985 ◽  
Vol 63 (7) ◽  
pp. 997-1004 ◽  
Author(s):  
K. Brabaharan ◽  
J. A. Coxon ◽  
A. Brian Yamashita

The 0–0, 1–1, and 2–2 bands of the A2Π ← X2Σ system of TiN have been recorded using the technique of laser-excitation spectroscopy. Molecular constants have been obtained from direct least squares fits of the measured line positions of individual bands. The fitted constants confirm and extend previous determinations; for the A2Π state, some of the constants show unusually large variations with ν, in accord with the already known perturbation of this state in the ν = 0 level.



1994 ◽  
Vol 72 (11-12) ◽  
pp. 1200-1205 ◽  
Author(s):  
Mingguang Li ◽  
John A. Coxon

The [Formula: see text] (000)–(000) band of the gas-phase CaOD radical has been rotationally analyzed using high-resolution laser spectroscopy. The technique of intermodulated fluorescence was employed to resolve the small spin-rotation splittings in the ground state. The measurement accuracy of the rotational line positions was 0.003 cm−1. The measured line positions have been employed in a least-squares estimation of the molecular constrants for both electronic states. Isotope relations between the constants of CaOH and CaOD are examined, and the constants AD and γ for the Ã2Π(000) level were separated using isotope effects.



1981 ◽  
Vol 59 (2) ◽  
pp. 289-297 ◽  
Author(s):  
G. P. Mishra ◽  
S. B. Rai ◽  
K. N. Upadhya

The A–X band system of CuCl has been photographed in emission under high resolution in the 2nd order of a 10.6 m concave grating spectrograph. Rotational structure in four bands, viz. (1,0), (0,0), (0,1), and (1,2) has been analysed. The present analysis confirms that in the A–X system the electronic transition involved is 1Π–1Σ where 1Σ is the ground state of the molecule. The Λ-type doubling in the 1Π state is found to be appreciable. The molecular constants for the excited A state of 63Cu35Cl are (with standard deviations in parentheses): Be = 0.168432(7) cm−1; αe = 0.001067(7); De = 0.1134(11) × 10−6; q = 0.000871(9); qD = 0.85(18) × 10−8; ν10 = 19 500.271(8); ν00 = 18 999.104(7); ν01 = 18 579.735(10); and ν12 = 18 574.745(11).



1959 ◽  
Vol 37 (5) ◽  
pp. 636-659 ◽  
Author(s):  
G. Herzberg ◽  
L. L. Howe

The Lyman bands of H2 have been investigated under high resolution with a view to improving the rotational and vibrational constants of H2 in its ground state. Precise Bv and ΔG values have been obtained for all vibrational levels of the ground state. One or two of the highest rotational levels of the last vibrational level (v = 14) lie above the dissociation limit. Both the [Formula: see text] and ΔG″ curves have a point of inflection at about v″ = 3. This makes it difficult to represent the whole course of each of these curves by a single formula and therefore makes the resulting equilibrium constants somewhat uncertain. This uncertainty is not very great for the rotational constants for which we find[Formula: see text]but is considerable for the vibrational constants ωe and ωexe for which three-, four-, five-, and six-term formulae give results diverging by ± 1 cm−1. The rotational and vibrational constants for the upper state [Formula: see text] of the Lyman bands are also determined. An appreciable correction to the position of the upper state is found.



1972 ◽  
Vol 50 (12) ◽  
pp. 1402-1408 ◽  
Author(s):  
S. M. Japar

The 2800 Å band system of p-dibromobenzene has been photographed under high resolution and an extended vibrational analysis has been carried out. The analysis is not inconsistent with the assignment of the system to a 1B2u ← 1Ag transition, by analogy with other p-dihalogenated benzenes. The observed spectrum can be explained in terms of a number of strong type-B vibronic bands and a considerably smaller number of type-A vibronic bands. The extensive sequence structure is adequately accounted for, and can be related to observations on other halogenated benzene molecules. Thirteen ground state and nine excited state fundamental vibrational frequencies have been assigned.



1975 ◽  
Vol 53 (14) ◽  
pp. 1321-1326 ◽  
Author(s):  
M. Carleer ◽  
M. Herman ◽  
R. Colin

A rotational analysis has been performed on the 0–0 band of the A2Π–X2Σ+ transition of the BeBr molecule photographed at high resolution in emission from a beryllium hollow cathode in the presence of bromine vapor. The following principal molecular constants have been determined:[Formula: see text]



1942 ◽  
Vol 20a (6) ◽  
pp. 71-82 ◽  
Author(s):  
A. E. Douglas ◽  
G. Herzberg

In a discharge through helium, to which a small trace of benzene vapour is added, a new band system of the type 1Π – 1Σ is found which is shown to be due to the CH+ molecule. The R(0) lines of the 0–0, 1–0, and 2–0 bands of the new system agree exactly with the hitherto unidentified interstellar lines 4232.58, 3957.72, 3745.33 Å, thus proving that CH+ is present in interstellar space. At the same time this observation of the band system in absorption shows that the lower state 1Σ is the ground state of the CH+ molecule. The new bands are closely analogous to the 1II – 1Σ+ BH bands. The analysis of the bands leads to the following vibrational and rotational constants of CH+ in its ground state: [Formula: see text], Be″ = 14.1767, αe″ = 0.4898 cm.−1. The internuclear distance is re″ = 1.1310∙10−8 cm. (for further molecular constants see Table V). From the vibrational levels of the upper 1Π state the heat of dissociation of CH+ can be obtained within fairly narrow limits: D0(CH+) = 3.61 ± 0.22 e.v. From this value the ionization potential of CH is derived to be I(CH) = 11.13 ± 0.22 e.v. The bearing of this value on recent work on ionization and dissociation of polyatomic molecules by electron impacts is briefly discussed.



1992 ◽  
Vol 70 (1) ◽  
pp. 40-54 ◽  
Author(s):  
John A. Coxon ◽  
Photos G. Hajigeorgiou

A collection of 10 866 of the most precise ground-state (X1Σ+) vibration–rotational and pure rotational line positions of four carbon monoxide isptopomers (12C16O, 12C18O, 13C16O, and 13C18O) is employed simultaneously in a direct determination of the radial Hamiltonian operator in compact analytical form. The 22-parameter isotopically self-consistent operator takes full account of the Born–Oppenheimer breakdown and its quantum-mechanical eigenvalues represent all the available spectroscopic line positions of CO isotopomers to within the experimental uncertainties. Rayleigh–Schrödinger perturbation theory is employed to calculate quantum-mechanical molecular constants of rotation (Bν – Mν) for nine common isotopomeric forms of CO. Together with the quantum-mechanical vibrational eigenvalues these are fully consistent with the exact eigenvalues obtained by direct solution of the radial wave equation. The set of constants is expected to provide an accurate prediction of line positions of CO isotopomers that have not yet been experimentally observed.



1967 ◽  
Vol 45 (8) ◽  
pp. 2805-2807 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The C band system of 63Cu81Br, lying in the region 3 900–4 600 Å, has been photographed in emission under high resolution and rotational analysis of the (2–0), (1–0), (0–0), (0–1), (0–2), and (1–3) bands carried out. The system is shown to involve a 1Σ(C1Σ)–1Σ(X1Σ) transition. The molecular constants of 63Cu81Br obtained from this fine-structure analysis are as follows:[Formula: see text]



1971 ◽  
Vol 49 (10) ◽  
pp. 1249-1254 ◽  
Author(s):  
Midori Shimauchi

The emission spectrum of the AsS radical, excited in a quartz tube by a 2450 MHz oscillator, was photographed on a high resolution spectrograph from 2450 to 6900 Å. Seven bands around 6000 Å showing clear rotational structures were chosen for the first rotational analysis of the AsS spectrum. The bands were found to arise from a 2Π3/2–2Π3/2 transition. The rotational and vibrational constants of the two states derived from the present work are consistent with the previous vibrational analysis of the A′2Π3/2–X2Π3/2 system. The constants of the upper doublet component of the ground state, X2Π3/2, are ωe = 562.40 cm−1, ωexe = 2.02 cm−1, re = 2.0216 Å; the constants of the A′2Π3/2 state are ΔG′(1/2) = 403.37 cm−1, ν0,0 = 18 621.21 cm−1, re = 2.2500 Å.



Sign in / Sign up

Export Citation Format

Share Document