High-resolution studies of the near-ultraviolet bands of oxygen: III: the system
Ten bands of the [Formula: see text] system of oxygen have been observed in absorption using longer path lengths than in the earlier work of Herzberg (1953). Rotational analysis of the bands confirms that the A′ 3Δu state is an inverted state as expected from electron-configuration arguments. Rotational assignments are given for the [Formula: see text] and [Formula: see text] sub-bands with ν′ = 2–11; weaker [Formula: see text] sub-bands are identified for ν′ = 5–11. Sub-band origins and rotational constants are given for all the bands. The following derived molecular constants are obtained:[Formula: see text]A comparison of the frequencies of the diffuse bands of oxygen with the sub-band origins of the [Formula: see text] bands shows convincingly that the diffuse bands can be assigned to a weak (O2)2 complex in which one of the O2 molecules is excited to the A′ 3Δu state.