High-resolution studies of the near-ultraviolet bands of oxygen: III: the system

1986 ◽  
Vol 64 (6) ◽  
pp. 726-732 ◽  
Author(s):  
B. Coquart ◽  
D. A. Ramsay

Ten bands of the [Formula: see text] system of oxygen have been observed in absorption using longer path lengths than in the earlier work of Herzberg (1953). Rotational analysis of the bands confirms that the A′ 3Δu state is an inverted state as expected from electron-configuration arguments. Rotational assignments are given for the [Formula: see text] and [Formula: see text] sub-bands with ν′ = 2–11; weaker [Formula: see text] sub-bands are identified for ν′ = 5–11. Sub-band origins and rotational constants are given for all the bands. The following derived molecular constants are obtained:[Formula: see text]A comparison of the frequencies of the diffuse bands of oxygen with the sub-band origins of the [Formula: see text] bands shows convincingly that the diffuse bands can be assigned to a weak (O2)2 complex in which one of the O2 molecules is excited to the A′ 3Δu state.


1971 ◽  
Vol 49 (3) ◽  
pp. 317-322 ◽  
Author(s):  
G. N. Currie ◽  
D. A. Ramsay

The 4875 Å band of glyoxal has been photographed in absorption under high resolution and a rotational analysis carried out. The band is of type C and the principal molecular constants are: A′ = 0.9069 cm−1, B′ = 0.1983 cm−1, C′ = 0.1627 cm−1, A″ = 0.8910 cm−1, B″ = 0.2066 cm−1, C″ = 0.1681 cm−1, v0 = 20 507.57 cm−1. The A-rotational constants are smaller by a factor of ~2 than the constants found earlier for trans glyoxal. The new results are consistent with the assignment of the band to an allowed 1B1–1A1 (π*–n) transition of cis glyoxal. Temperature studies indicate that the cis isomer lies 1125 ± 100 cm−1 above the trans isomer. This is the first time that cis glyoxal has been detected experimentally.



1985 ◽  
Vol 63 (7) ◽  
pp. 997-1004 ◽  
Author(s):  
K. Brabaharan ◽  
J. A. Coxon ◽  
A. Brian Yamashita

The 0–0, 1–1, and 2–2 bands of the A2Π ← X2Σ system of TiN have been recorded using the technique of laser-excitation spectroscopy. Molecular constants have been obtained from direct least squares fits of the measured line positions of individual bands. The fitted constants confirm and extend previous determinations; for the A2Π state, some of the constants show unusually large variations with ν, in accord with the already known perturbation of this state in the ν = 0 level.



1975 ◽  
Vol 53 (14) ◽  
pp. 1321-1326 ◽  
Author(s):  
M. Carleer ◽  
M. Herman ◽  
R. Colin

A rotational analysis has been performed on the 0–0 band of the A2Π–X2Σ+ transition of the BeBr molecule photographed at high resolution in emission from a beryllium hollow cathode in the presence of bromine vapor. The following principal molecular constants have been determined:[Formula: see text]



1986 ◽  
Vol 64 (6) ◽  
pp. 721-725 ◽  
Author(s):  
P. M. Borrell ◽  
P. Borrell ◽  
D. A. Ramsay

Bands of the [Formula: see text] system of oxygen have been re-examined using longer absorption paths and higher resolution than in the early work of Herzberg (1952). More accurate values are given for the molecular constants v0, B, D, λ, and γ for levels with v′ = 0–11. The principal constants for the [Formula: see text] state are as follows:[Formula: see text]



1967 ◽  
Vol 45 (8) ◽  
pp. 2805-2807 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
K. V. S. R. Apparao

The C band system of 63Cu81Br, lying in the region 3 900–4 600 Å, has been photographed in emission under high resolution and rotational analysis of the (2–0), (1–0), (0–0), (0–1), (0–2), and (1–3) bands carried out. The system is shown to involve a 1Σ(C1Σ)–1Σ(X1Σ) transition. The molecular constants of 63Cu81Br obtained from this fine-structure analysis are as follows:[Formula: see text]



1979 ◽  
Vol 57 (7) ◽  
pp. 1051-1058 ◽  
Author(s):  
R. Colin

Six bands of the b1Σ+–X3Σ− transition of the PBr molecule have been observed in a microwave discharge of PBr3 + He. High resolution spectra have allowed the rotational analysis of the 0–0 and 1–1 bands. The principal molecular constants obtained are:X3Σ−: P79Br; ωe = 458.35 cm−1, Be = 0.16067 cm−1; P81Br; ωe = 457.78 cm−1, Be = 0.15958 cm−1; re = 2.1714 Å.B1Σ+: P79Br; ωe = 485.47 cm−1, Be = 0.16509 cm−1; P81Br; ωe = 483.84 cm−1, Be = 0.16399 cm−1; re = 2.1421 Å and Te = 11779.75 cm−1.



1986 ◽  
Vol 64 (6) ◽  
pp. 717-720 ◽  
Author(s):  
D. A. Ramsay

Ten new bands of the [Formula: see text] system of oxygen have been found using longer absorption paths than in the earlier work of Herzberg (1953). Rotational assignments and molecular constants are given for all bands from ν′ = 1–16. The principal constants for the [Formula: see text] state are as follows:[Formula: see text]



1992 ◽  
Vol 70 (5) ◽  
pp. 291-294 ◽  
Author(s):  
Sheila Gopal ◽  
M. Singh ◽  
G. Lakshminarayana

The emission spectrum of Si130Te was excited by microwave discharge (2450 MHz) in a sealed quartz tube. The A1Π–X1Σ+ band system (3100–3900 Å) (1 Å = 10−10 m) photographed under high resolution on a 10.6 m Ebert grating spectrograph. The rotational analysis of 32 bands was carried out, which led to the determination of the accurate vibrational and rotational constants. The rotational structure belonging to ν′ > 9 levels appear to be perturbed.



2009 ◽  
Vol 87 (5) ◽  
pp. 557-565 ◽  
Author(s):  
A. G. Adam ◽  
A. D. Granger ◽  
L. E. Downie ◽  
D. W. Tokaryk ◽  
C. Linton

Laser-induced fluorescence spectra of iridium monofluoride (IrF) have been obtained at both low and high resolution. Two transitions have been observed; based on the rotational analysis of the high-resolution spectra, they have been assigned as A3Φi-X3Φi and B3Φi-X3Φi. For the X (ground) and B states, only the lowest Ω = 4 components have been observed, while for the A state, the two lowest components, Ω = 4 and 3, were detected. A global fit to all of the high-resolution data (six bands of A-X and five of B-X) yielded a complete set of molecular constants for all three states of both 191IrF and 193IrF. The v = 3 level of the A3Φ4 state was found to be heavily perturbed and many extra lines belonging to the perturbing state were observed for each isotopologue. A deperturbation analysis showed that the perturber is an Ω = 5 state, and molecular parameters for this state were obtained.



1982 ◽  
Vol 60 (12) ◽  
pp. 1730-1742 ◽  
Author(s):  
M. Singh ◽  
M. D. Saksena

Several weak bands of AlO, degraded to the violet and occurring as wide doublets 200 cm−1 apart, have been observed in the region 3300–4000 Å, in emission from a high frequency discharge through a flowing mixture of AlCl3 vapour, oxygen, and argon. These bands have been identified as due to a new electronic transition C2πr–A2πi of AlO. This has been confirmed from a detailed rotational analysis of the 1–0 and 0–1 bands (heads, respectively, at 3481.92, 3506.09 Å and 3683.30, 3710.98 Å) from high resolution spectra. Numerous rotational perturbations have been found in both the C2π3/2 and C2π1/2 substates. Effective rotational constants have been determined for these substates. Λ-doubling has been observed even in the substate C2π3/2.



Sign in / Sign up

Export Citation Format

Share Document