scholarly journals Boundary-layer growth on a rotating and accelerating sphere

1987 ◽  
Vol 65 (1) ◽  
pp. 23-27 ◽  
Author(s):  
G. T. Karahalios ◽  
V. Theofilis

Boundary-layer growth on a sphere is studied when it is set into motion with constant acceleration and constant angular velocity, the latter being normal to the former. Analytic expressions are derived for the velocity components of the incompressible fluid in terms of a power series of the time of motion as well as for the skin friction.

Author(s):  
S. Goldstein ◽  
L. Rosenhead

When relative motion of a viscous incompressible fluid of constant density and an immersed solid body is started impulsively from rest, the initial motion of the fluid is irrotational, without circulation. This is shown by observation, and may be seen in many of the published photographs of fluid flow. The theoretical proof is exactly the same as that given, for inviscid fluids, in treatises on hydrodynamics; for it may be assumed that the viscous stresses remain finite. The fluid in contact with the solid body is, however, at rest relative to the boundary, whilst the adjacent layer of fluid is slipping past the boundary with a velocity determined from the theory of the velocity potential. There is thus initially a surface of slip, or vortex sheet, in the fluid, coincident with the surface of the solid body. In other words, there is a “boundary layer” of zero thickness. The vorticity in the sheet diffuses from the boundary further into the fluid, and is convected by the stream. The boundary layer grows in thickness. (The same results follow from a consideration of the equations for the vorticity components in a viscous incompressible fluid, or of the equation for the circulation in a circuit moving with the fluid.)


1947 ◽  
Vol 14 (3) ◽  
pp. A213-A216
Author(s):  
R. C. Binder

Abstract A method is presented for calculating the efficiency of a diffuser for two-dimensional, steady, incompressible flow without separation. The method involves a combination of organized boundary-layer data and frictionless potential-flow relations. The potential velocity and pressure are found after the boundary-layer growth is determined by a trial-and-check calculation.


2016 ◽  
Vol 16 (9) ◽  
pp. 5811-5839 ◽  
Author(s):  
Jan Kazil ◽  
Graham Feingold ◽  
Takanobu Yamaguchi

Abstract. Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m−2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base and thereby reduces decoupling and helps maintain LWP. The total (shortwave + longwave) cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged total CRE. However, the sensitivity of the diurnally averaged total CRE to wind speed decreases with increasing wind speed.


1993 ◽  
Vol 115 (4) ◽  
pp. 614-619 ◽  
Author(s):  
S. Abrahamson ◽  
S. Lonnes

An integral method for computing turbulent boundary layers on rotating disks has been developed using a power law profile for the tangential velocity and a new model for the radial profile. A similarity solution results from the formulation. Radial transport, boundary layer growth, and drag on the disk were computed for the case of a forced vortex frees tream flow. The results were compared to previous similarity solutions. The method was extended to a Rankine vortex freestream flow. Differential equations for boundary layer parameters were developed and solved for different Reynolds numbers to look at the net entrainment, boundary layer growth, and drag on the disk.


Sign in / Sign up

Export Citation Format

Share Document