adjacent layer
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Noah Prentice Mitchell ◽  
Dillon Cislo ◽  
Suraj Shankar ◽  
yuzheng Lin ◽  
Boris I Shraiman ◽  
...  

How organs achieve their final shape is a problem at the interface between physics and developmental biology. Organs often involve multiple interacting tissue layers that must be coordinated to orchestrate the complex shape changes of development. Intense study has uncovered genetic and physical ingredients driving the form of monolayer tissue. Yet, tracing dynamics across tissue layers and across scales -- from cell to tissue, to entire organs -- remains an outstanding challenge. Here, we study the midgut of Drosophila embryos as a model visceral organ to reconstruct in toto the dynamics of multi-layer organ formation in vivo. Using light-sheet microscopy, genetics, computer vision, and tissue cartography, we extract individual tissue layers to map the time course of shape across scales. We identify the kinematic mechanism driving the shape change due to tissue layer interactions by linking out-of-plane motion to active contraction patterns, revealing a convergent extension process in which cells deform as they flow into deepening folds. Acute perturbations of contractility in the muscle layer using non-neuronal optogenetics reveals that these contraction patterns are due to muscle activity, which induces cell shape changes in the adjacent endoderm layer. This induction cascade relies on high frequency calcium pulses in the muscle layer, under the control of hox genes. Inhibition of targets of calcium involved in myosin phosphorylation abolishes constrictions. Our study of multi-layer organogenesis reveals how genetic patterning in one layer triggers a dynamic molecular mechanism to control a physical process in the adjacent layer, orchestrating whole-organ shape change.


2021 ◽  
Vol 115 ◽  
pp. 18-28
Author(s):  
Teresa Kłosińska

American tulipwood (Liriodendron tulipifera L.) as an innovative material in CLT technology. CLT (cross laminated timber, X-Lam) is one type of engineered wood products. The first idea of CLT was presented in the seventies of the last century. It is manufactured with timber boards placed side by side commonly with 3, 5 and 7 layers glued at 90 degrees to adjacent layer. The CLT production technology was developed for softwood. The main species in CLT production is Norway spruce (Picea abies L.) and less often White fir (Abies alba Mill.). Hardwood is also used more and more for production of CLT, most often, the wood of Silver birch (Betula pendula Roth.), Ash (Fraxinus excelsior L.), poplars (Populus spp.), Locust tree (Robinia pseudoacacia L.). This paper describes the suitability of cheap tulipwood (Liriodendron tulipifera L.) as a raw material for the production of CLT. Examples of the use of this type of panels in construction are also presented. The tulipwood has similar physical characteristics to softwood, for which CLT production technologies were previously developed. This makes it possible to use the technology previously for softwood CLT was developed. In addition, the tulipwood is characterized by aesthetic visual quality (wood surface similar to marble). Thanks to this, CLT boards to make exposed surfaces can be used.


Author(s):  
Berthold Stöger ◽  
Hannes Krüger ◽  
Matthias Weil

Crystals of the hydrous magnesium orthotellurate(VI) Mg(H2O)2[TeO2(OH)4] were grown by slow diffusion of an aqueous MgCl2 solution into a KOH/Te(OH)6 solution immobilized in gelatin. The crystal structure is built of sheets of nearly regular corner-sharing [MgO6] and [TeO6] octahedra. Half of the bridging O atoms are connected to disordered H atoms, which are located in rhomboidal voids (long and short diameters of ∼5.0 and ∼2.5 Å, respectively) of these layers. Moreover, the TeVI atom connects to two OH− ions and the MgII atom to two H2O molecules. The OH− ions and H2O molecules connect adjacent layers forming a disordered hydrogen-bonding network. In a given layer, an adjacent layer may be positioned in four ways, which can be characterized by one of two origin shifts and one of two orientations with respect to [100]. The crystals feature a disordered stacking arrangement, leading to rods of diffuse scattering in the diffraction pattern. The polytypism is explained by application of the order–disorder (OD) theory. Different refinement models are compared and the diffuse scattering is evaluated with structure factor calculations. The correlation coefficient of subsequent origin shifts is ∼ −0.33, whereas the orientation of the layers is essentially random. Determining the latter is particularly difficult owing to a small contribution to the diffraction pattern and virtually indistinguishable diffraction patterns for pairs of correlations with the same absolute value. On longer standing in a glass vial, an ordered polytype forms.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Enbiao Zhao ◽  
Kangnan Li ◽  
Xin Yang ◽  
Nan Deng

Coal will still be China’s basic energy for quite a long time. With the increase of mining depth, gas content and pressure also increase. The problems of gas emission and overrun affect the safety and efficient production of coal resource to a certain extent. In this work, the field test of gas drainage borehole peeping and trajectory measurement in coal seam of Changling coal mine are carried out. These coal seams include C5b coal seam, upper adjacent C5a coal seam, C6a coal seams, C6c in lower adjacent strata, and C5b coal seam in high-level borehole. The view of gas drainage borehole peeping and trajectory measurement in the working seam, upper adjacent layer, lower adjacent layer, and high position are obtained. It is found that the hole collapses at the position of about 20 m in both adjacent strata and high-level boreholes, and there are a lot of cracks in the high-level boreholes before 12 m. The deviation distance of high-level borehole is large, and the actual vertical deviation of upper adjacent layer is small. Finally, the strategies to prevent the deviation of drilling construction are put forward. It includes four aspects: ensuring the reliability of drilling equipment, reasonably controlling the drilling length, standardizing the drilling, and reasonably selecting the drilling process parameters.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kiumars Aryana ◽  
John T. Gaskins ◽  
Joyeeta Nag ◽  
Derek A. Stewart ◽  
Zhaoqiang Bai ◽  
...  

AbstractPhase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xandor M. Spijkers ◽  
Svetlana Pasteuning-Vuhman ◽  
Jennifa C. Dorleijn ◽  
Paul Vulto ◽  
Nienke R. Wevers ◽  
...  

AbstractWe report a method to generate a 3D motor neuron model with segregated and directed axonal outgrowth. iPSC-derived motor neurons are cultured in extracellular matrix gel in a microfluidic platform. Neurons extend their axons into an adjacent layer of gel, whereas dendrites and soma remain predominantly in the somal compartment, as verified by immunofluorescent staining. Axonal outgrowth could be precisely quantified and was shown to respond to the chemotherapeutic drug vincristine in a highly reproducible dose-dependent manner. The model was shown susceptible to excitotoxicity upon exposure with excess glutamate and showed formation of stress granules upon excess glutamate or sodium arsenite exposure, mimicking processes common in motor neuron diseases. Importantly, outgrowing axons could be attracted and repelled through a gradient of axonal guidance cues, such as semaphorins. The platform comprises 40 chips arranged underneath a microtiter plate providing both throughput and compatibility to standard laboratory equipment. The model will thus prove ideal for studying axonal biology and disease, drug discovery and regenerative medicine.


Author(s):  
Ashish Kumar Gupta ◽  
Ayan Seal ◽  
Pritee Khanna ◽  
Enrique Herrera-Viedma ◽  
Ondrej Krejcar

2020 ◽  
Vol 102 (21) ◽  
Author(s):  
I. Kumberg ◽  
E. Golias ◽  
N. Pontius ◽  
R. Hosseinifar ◽  
K. Frischmuth ◽  
...  

2020 ◽  
Vol 10 (11) ◽  
pp. 3962
Author(s):  
Franklin Domínguez ◽  
Luis Carral

The advantages of laminates in terms of the chemical properties and mechanical properties/weight relationship have motivated several applications of fiber-reinforced plastic (FRP) composites in naval constructions due to the reduction in structural weight. This weight advantage has motivated multiple investigations dedicated to dissimilar material joints. We present a methodology for the interlaminar stress calculations of a tubular hybrid joint between an FRP panel and a steel panel through tubular reinforcements. The proposed formulas allow the estimation of the shear and normal stresses on the adhesive, which are generated in the bonding angle of the tubular hybrid joint. The stresses generated at the adhesive bonding ends influence on the adherent’s adjacent layer. A failure criterion is shown to check the accomplishment of the resulting stresses in the adherent laminate. Finally, the proposed formulas are validated using the finite element method and compared with the obtained interlaminar stresses.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Megan F. Watkins ◽  
Yesaswi N. Chilamkurti ◽  
Richard D. Gould

Abstract The high packing fractions of dense granular flows make them an attractive option as a heat transfer fluid or thermal energy storage medium for high temperature applications. Previous works studying the heat transfer to dense flows have identified an increased thermal resistance adjacent to the heated surface as a limiting factor in the heat transfer to a discrete particle flow. While models exist to estimate the heat transfer to dense flows, no physics-based model describing the heat transfer in the near-wall layer is found; this is the focus of the present study. Discrete element method (DEM) simulations were used to examine the near-wall flow characteristics, identifying how parameters such as the near-wall packing fraction and number of particle-wall contacts may affect the heat transfer from the wall. A correlation to describe the effective thermal conductivity (ETC) of the wall-adjacent layer (with thickness of a particle radius) was derived based on parallel thermal resistances representing the heat transfer to particles in contact with the wall, particles not in contact with the wall, and void spaces. Empirical correlations based on DEM results were developed to estimate the near-wall packing fraction and number of particle-wall contacts. The contribution from radiation was also incorporated using a simple enclosure analysis. The ETC correlation was validated by incorporating it into dense flow models for chute flows and cylindrical flows and comparing with the experimental data for each.


Sign in / Sign up

Export Citation Format

Share Document