Magneto gas dynamic singular surfaces in an isothermal flow of gas

1987 ◽  
Vol 65 (7) ◽  
pp. 793-795
Author(s):  
S. N. Ojha ◽  
Ashok Singh

The discontinuity surfaces across which the only discontinuities in the derivatives of flow variables exist are known as singular surfaces. The influence of a magnetic field on the propagation of singular surfaces in an isothermal flow of gas is investigated. We find that the expansive waves ultimately disperse while compressive waves grow into a shockwave in a finite time. The derivation of the shock-wave formation time and its dependence on the magnetic-field intensity reveal interesting differences between outward- and inward-moving singular surfaces. In the particular cases of plane and cylindrical singular surfaces, the shock-wave formation distances and times have been derived.

2011 ◽  
Vol 37 (9) ◽  
pp. 877-880 ◽  
Author(s):  
S. I. Krivosheev ◽  
V. S. Pomazov ◽  
G. A. Shneerson

2021 ◽  
Vol 76 (3) ◽  
pp. 265-283
Author(s):  
G. Nath

Abstract The approximate analytical solution for the propagation of gas ionizing cylindrical blast (shock) wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field is investigated. The axial and azimuthal components of fluid velocity are taken into consideration and these flow variables, magnetic field in the ambient medium are assumed to be varying according to the power laws with distance from the axis of symmetry. The shock is supposed to be strong one for the ratio C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ to be a negligible small quantity, where C 0 is the sound velocity in undisturbed fluid and V S is the shock velocity. In the undisturbed medium the density is assumed to be constant to obtain the similarity solution. The flow variables in power series of C 0 V s 2 ${\left(\frac{{C}_{0}}{{V}_{s}}\right)}^{2}$ are expanded to obtain the approximate analytical solutions. The first order and second order approximations to the solutions are discussed with the help of power series expansion. For the first order approximation the analytical solutions are derived. In the flow-field region behind the blast wave the distribution of the flow variables in the case of first order approximation is shown in graphs. It is observed that in the flow field region the quantity J 0 increases with an increase in the value of gas non-idealness parameter or Alfven-Mach number or rotational parameter. Hence, the non-idealness of the gas and the presence of rotation or magnetic field have decaying effect on shock wave.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 458 ◽  
Author(s):  
Astha Chauhan ◽  
Rajan Arora ◽  
Mohd Siddiqui

Blast waves are generated when an area grows abruptly with a supersonic speed, as in explosions. This problem is quite interesting, as a large amount of energy is released in the process. In contrast to the situation of imploding shocks in ideal gas, where a vast literature is available on the effect of magnetic fields, very little is known about blast waves propagating in a magnetic field. As this problem is highly nonlinear, there are very few techniques that may provide even an approximate analytical solution. We have considered a problem on planar and radially symmetric blast waves to find an approximate solution analytically using Sakurai’s technique. A magnetic field has been taken in the transverse direction. Gas particles are supposed to be propagating orthogonally to the magnetic field in a non-deal medium. We have further assumed that specific conductance of the medium is infinite. Using Sakurai’s approach, we have constructed the solution in a power series of ( C / U ) 2 , where C is the velocity of sound in an ideal gas and U is the velocity of shock front. A comparison of obtained results in the absence of a magnetic field within the published work of Sakurai has been made to generate the confidence in our results. Our results match well with the results reported by Sakurai for gas dynamics. The flow variables are computed behind the leading shock and are shown graphically. It is very interesting that the solution of the problem is obtained in closed form.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450008
Author(s):  
Isaac Macwan ◽  
Zihe Zhao ◽  
Omar Sobh ◽  
Jinnque Rho ◽  
Ausif Mahmood ◽  
...  

Magnetotactic bacteria (MTB), discovered in early 1970s contain single-domain crystals of magnetite ( Fe 3 O 4) called magnetosomes that tend to form a chain like structure from the proximal to the distal pole along the long axis of the cell. The ability of these bacteria to sense the magnetic field for displacement, also called magnetotaxis, arises from the magnetic dipole moment of this chain of magnetosomes. In aquatic habitats, these organisms sense the geomagnetic field and traverse the oxic-anoxic interface for optimal oxygen concentration along the field lines. Here we report an elegant use of MTB where magnetotaxis of Magnetospirillum magneticum (classified as AMB-1) could be utilized for controlled navigation over a semiconductor substrate for selective deposition. We examined 50mm long coils made out of 18AWG and 20AWG copper conductors having diameters of 5mm, 10mm and 20mm for magnetic field intensity and heat generation. Based on the COMSOL simulations and experimental data, it is recognized that a compound semiconductor manufacturing technology involving bacterial carriers and carbon-based materials such as graphene and carbon nanotubes would be a desirable choice in the future.


Sign in / Sign up

Export Citation Format

Share Document