The Arctic ozone crater in 1989

1990 ◽  
Vol 68 (10) ◽  
pp. 1113-1121
Author(s):  
W. F. J. Evans ◽  
A. E. Walker ◽  
F. E. Bunn

The presence of a thinned area or craterlike feature in the Arctic polar ozone layer during March, 1986 has been reported previously (Can. J. Phys. 67, 161 (1989)). In this paper the morphology of the reappearance of the crater from January to March, 1989 is described. It appeared over northern Europe in late January and moved over western Canada in late February. The minimum value of ozone in the crater floor had fallen from 300 DU (1 Dobson unit (DU) = 0.01 mm) in 1979 to a new low of less than 200 DU in 1989, which is similar to the thinned total ozone columns observed within the Antarctic ozone hole. Analysis of the available total ozone mapping spectrometer ozone measurements indicates that the crater could be explained by a combination of two mechanisms; a chemical process, which depleted the ozone concentrations at altitudes in the 14–22 km region, and a transport process, which shifted the altitude distribution of ozone upwards such as a vertical circulation cell. Although the Arctic ozone crater is similar in several aspects to the Antarctic ozone hole, there remain several differences; the issue is whether the crater and the hole are manifestations of the same phenomenon. We consider that the Arctic ozone crater is mainly produced by dynamic redistribution driven by tropospheric circulation features.

2018 ◽  
Vol 36 (2) ◽  
pp. 415-424 ◽  
Author(s):  
Gabriela Dornelles Bittencourt ◽  
Caroline Bresciani ◽  
Damaris Kirsch Pinheiro ◽  
José Valentin Bageston ◽  
Nelson Jorge Schuch ◽  
...  

Abstract. The Antarctic ozone hole is a cyclical phenomenon that occurs during the austral spring where there is a large decrease in ozone content in the Antarctic region. Ozone-poor air mass can be released and leave through the Antarctic ozone hole, thus reaching midlatitude regions. This phenomenon is known as the secondary effect of the Antarctic ozone hole. The objective of this study is to show how tropospheric and stratospheric dynamics behaved during the occurrence of this event. The ozone-poor air mass began to operate in the region on 20 October 2016. A reduction of ozone content of approximately 23 % was observed in relation to the climatology average recorded between 1992 and 2016. The same air mass persisted over the region and a drop of 19.8 % ozone content was observed on 21 October. Evidence of the 2016 event occurred through daily mean measurements of the total ozone column made with a surface instrument (Brewer MkIII no. 167 Spectrophotometer) located at the Southern Space Observatory (29.42∘ S, 53.87∘ W) in São Martinho da Serra, Rio Grande do Sul. Tropospheric dynamic analysis showed a post-frontal high pressure system on 20 and 21 October 2016, with pressure levels at sea level and thickness between 1000 and 500 hPa. Horizontal wind cuts at 250 hPa and omega values at 500 hPa revealed the presence of subtropical jet streams. When these streams were allied with positive omega values at 500 hPa and a high pressure system in southern Brazil and Uruguay, the advance of the ozone-poor air mass that caused intense reductions in total ozone content could be explained. Keywords. Atmospheric composition and structure (middle atmosphere – composition and chemistry)


2014 ◽  
Vol 14 (5) ◽  
pp. 2353-2361 ◽  
Author(s):  
N. A. Kramarova ◽  
E. R. Nash ◽  
P. A. Newman ◽  
P. K. Bhartia ◽  
R. D. McPeters ◽  
...  

Abstract. The new Ozone Mapping and Profiler Suite (OMPS), which launched on the Suomi National Polar-orbiting Partnership satellite in October 2011, gives a detailed view of the development of the Antarctic ozone hole and extends the long series of satellite ozone measurements that go back to the early 1970s. OMPS includes two modules – nadir and limb – to measure profile and total ozone concentrations. The new limb module is designed to measure the vertical profile of ozone between the lowermost stratosphere and the mesosphere. The OMPS observations over Antarctica show excellent agreement with the measurements obtained from independent satellite and ground-based instruments. This validation demonstrates that OMPS data can ably extend the ozone time series over Antarctica in the future. The OMPS observations are used to monitor and characterize the evolution of the 2012 Antarctic ozone hole. While large ozone losses were observed in September 2012, a strong ozone rebound occurred in October and November 2012. This ozone rebound is characterized by rapid increases of ozone at mid-stratospheric levels and a splitting of the ozone hole in early November. The 2012 Antarctic ozone hole was the second smallest on record since 1988.


2019 ◽  
Vol 75 ◽  
pp. 02008
Author(s):  
Alexander V. Dergunov ◽  
Valentin B. Kashkin ◽  
Тatyana V. Rubleva ◽  
Alexey A. Romanov ◽  
Roman V. Odintsov

Satellite data on total ozone content for 1985-2015 have been used. Methods of evaluating ozone deficit in the polar region and its excess in middle latitudes of the Southern Hemisphere have been developed. In early spring the ozone molecules outflow and the ozone anomaly forms. Ozone inflows the middle latitudes, its total content increases and a ring with elevated TO forms. In October-November the dynamic process reverses, from the ring the ozone molecules transfer to the polar latitudes. The amount of ozone leaving the ring into the polar regions and filling the ozone anomaly is virtually the same. The results produces indicate that the Antarctic ozone hole is a natural geophysical formation.


2013 ◽  
Vol 13 (10) ◽  
pp. 26305-26325 ◽  
Author(s):  
N. A. Kramarova ◽  
E. R. Nash ◽  
P. A. Newman ◽  
P. K. Bhartia ◽  
R. D. McPeters ◽  
...  

Abstract. The new Ozone Mapping and Profiler Suite (OMPS) launched on the Suomi National Polar-orbiting Partnership satellite in October 2011 gives a more detailed view of the development of the Antarctic ozone hole than ever before. This instrumental suite extends the long series of satellite ozone measurements that go back to the early 1970s. The OMPS includes two modules – nadir and limb – to measure profile and total ozone concentrations. The new limb module is designed to measure the vertical profile of ozone between the lowermost stratosphere and the mesosphere. The OMPS observations over Antarctica show excellent agreement with the measurements obtained from independent satellite and ground-based instruments. This validation demonstrates that OMPS data can ably extend the ozone time series over Antarctica in the future. The OMPS observations are used to monitor and characterize the evolution of the 2012 Antarctic ozone hole. While large ozone losses were observed in September 2012, a strong ozone rebound occurred in October and November 2012. This ozone rebound is characterized by rapid increases of ozone at mid-stratospheric levels and a splitting of the ozone hole in early November. The 2012 Antarctic ozone hole was the second smallest on record since 1988.


1989 ◽  
Vol 67 (2-3) ◽  
pp. 161-165 ◽  
Author(s):  
W. F. J. Evans

A craterlike structure or "hole" in the Arctic polar ozone layer during March 1986 has been observed in the total ozone images from the total ozone mapping spectrometer instrument on the NIMBUS 7 satellite. Observations from ozonesondes in the vicinity of this crater show a depleted region in the altitude profile from 10 to 16 km. This altitude region of depleted ozone is similar to the depleted layer observed from 12 to 18 km within the Antarctic ozone hole. A comparison has been made between the ozone altitude profile outside the crater at Resolute, N.W.T., Canada (75°N), and the ozone altitude profile inside the crater at Lindenberg, German Democratic Republic, (55°N). The difference in these profiles demonstrates that the crater is due to a process that has altered the altitude distribution of ozone in the 10–16 km region. This depletion could be attributed to either a vertical circulation or a chemical-depletion process.


Nature ◽  
2019 ◽  
Vol 575 (7781) ◽  
pp. 46-47 ◽  
Author(s):  
Susan Solomon

Sign in / Sign up

Export Citation Format

Share Document